QUENCHING TIME FOR A SYSTEM OF SEMILINEAR HEAT EQUATIONS

被引:1
|
作者
Boni, Theodore K. [1 ]
Nachid, Halima
Nabongo, Diabate
机构
[1] Inst Natl Polytech Houphouet Boigny Yamoussoukro, Dept Math & Informat, Yamoussoukro, Cote Ivoire
来源
MISKOLC MATHEMATICAL NOTES | 2010年 / 11卷 / 01期
关键词
quenching; semilinear parabolic system; numerical quenching time; PARABOLIC EQUATIONS; DIFFUSION;
D O I
10.18514/MMN.2010.191
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the study of the quenching time of the solution of the initial-boundary value problem for a system of reaction-diffusion equations.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 50 条
  • [31] Quenching for a generalization of semilinear Euler-Poisson-Darboux equations
    Zhu, Jianmin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2705 - E2709
  • [32] Non-simultaneous quenching in a system of heat equations coupled at the boundary
    Raúl Ferreira
    Arturo de Pablo
    Fernando Quirós
    Julio D. Rossi
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2006, 57 : 586 - 594
  • [33] On the Blowing-up and Quenching Problems for Semilinear Heat Equation
    陈庆益
    数学研究与评论, 1985, (01) : 67 - 72
  • [34] Non-simultaneous quenching in a system of heat equations coupled at the boundary
    Ferreira, Raul
    de Pablo, Arturo
    Quiros, Fernando
    Rossi, Julio D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (04): : 586 - 594
  • [35] The quenching phenomenon of a nonlocal semilinear heat equation with a weak singularity
    Zhi, Yuanhong
    Mu, Chunlai
    Yuan, Daming
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 701 - 709
  • [36] ON THE BLOWUP OF MULTIDIMENSIONAL SEMILINEAR HEAT-EQUATIONS
    FILIPPAS, S
    LIU, WX
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (03): : 313 - 344
  • [38] THE QUENCHING BEHAVIOR OF A SEMILINEAR HEAT EQUATION WITH A SINGULAR BOUNDARY OUTFLUX
    Selcuk, Burhan
    Ozalp, Nuri
    QUARTERLY OF APPLIED MATHEMATICS, 2014, 72 (04) : 747 - 752
  • [39] The cost of approximate controllability for semilinear heat equations
    Yan Y.
    Zhao Y.
    Huang Yu.
    Journal of Control Theory and Applications, 2009, 7 (1): : 73 - 76
  • [40] A matrix Harnack inequality for semilinear heat equations
    Ascione, Giacomo
    Castorina, Daniele
    Catino, Giovanni
    Mantegazza, Carlo
    MATHEMATICS IN ENGINEERING, 2023, 5 (01):