A Generalized Framework of Multifidelity Max-Value Entropy Search Through Joint Entropy

被引:2
|
作者
Takeno, Shion [1 ,2 ]
Fukuoka, Hitoshi [3 ]
Tsukada, Yuhki [3 ]
Koyama, Toshiyuki [3 ]
Shiga, Motoki [2 ,4 ,5 ]
Takeuchi, Ichiro [2 ,3 ,6 ]
Karasuyama, Masayuki [3 ,4 ,6 ]
机构
[1] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
[2] RIKEN Ctr Adv Intelligence Project, Chuo Ku, Tokyo 1030027, Japan
[3] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[4] Japan Sci & Technol Agcy, Kawaguchi, Saitama 3320012, Japan
[5] Gifu Univ, Gifu 5011193, Japan
[6] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
关键词
OPTIMIZATION;
D O I
10.1162/neco_a_01530
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian optimization (BO) is a popular method for expensive black-box optimization problems; however, querying the objective function at every iteration can be a bottleneck that hinders efficient search capabilities. In this regard, multifidelity Bayesian optimization (MFBO) aims to accelerate BO by incorporating lower-fidelity observations available with a lower sampling cost. In our previous work, we proposed an information-theoretic approach to MFBO, referred to as multifidelity max-value entropy search (MF-MES), which inherits practical effectiveness and computational simplicity of the well-known max-value entropy search (MES) for the single-fidelity BO. However, the applicability of MF-MES is still limited to the case that a single observation is sequentially obtained. In this letter, we generalize MF-MES so that information gain can be evaluated even when multiple observations are simultaneously obtained. This generalization enables MF-MES to address two practical problem settings: synchronous parallelization and trace-aware querying. We show that the acquisition functions for these extensions inherit the simplicity of MF-MES without introducing additional assumptions. We also provide computational techniques for entropy evaluation and posterior sampling in the acquisition functions, which can be commonly used for all variants of MF-MES. The effectiveness of MF-MES is demonstrated using benchmark functions and real-world applications such as materials science data and hyperparameter tuning of machine-learning algorithms.
引用
收藏
页码:2145 / 2203
页数:59
相关论文
共 50 条
  • [21] Integrability of Difference Equations Through Algebraic Entropy and Generalized Symmetries
    Gubbiotti, Giorgio
    SYMMETRIES AND INTEGRABILITY OF DIFFERENCE EQUATIONS, 2017, : 75 - 151
  • [22] Generalized Network Temperature for DDoS Detection through Renyi Entropy
    Wang, Xiang
    Zhang, Xing
    Wang, Changda
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY, AND SECURITY COMPANION, QRS-C, 2022, : 24 - 33
  • [23] Quantum discord through the generalized entropy in bipartite quantum states
    Xi-Wen Hou
    Zhi-Peng Huang
    Su Chen
    The European Physical Journal D, 2014, 68
  • [24] A generalized fault diagnosis framework for rotating machinery based on phase entropy
    Wang, Zhenya
    Zhang, Meng
    Chen, Hui
    Li, Jinghu
    Li, Gaosong
    Zhao, Jingshan
    Yao, Ligang
    Zhang, Jun
    Chu, Fulei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 256
  • [25] Generalized Uncertainty Principle and Correction Value to the Kerr Black Hole Entropy
    Zhang Ya
    Hu Shuang-Qi
    Zhao Ren
    Li Huai-Fan
    International Journal of Theoretical Physics, 2008, 47 : 520 - 525
  • [26] Entropy and generalized least square methods in assessment of the regional value of streamgages
    Markus, M
    Knapp, HV
    Tasker, GD
    JOURNAL OF HYDROLOGY, 2003, 283 (1-4) : 107 - 121
  • [27] Generalized uncertainty principle and correction value to the Kerr black hole entropy
    Zhang Ya
    Hu Shuang-Qi
    Zhao Ren
    Li Huai-Fan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) : 520 - 525
  • [28] Generalized Cross Entropy Method for estimating joint distribution from incomplete information
    Xu, Hai-Yan
    Kuo, Shyh-Hao
    Li, Guoqi
    Legara, Erika Fille T.
    Zhao, Daxuan
    Monterola, Christopher P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 453 : 162 - 172
  • [29] Comment on "Quantum discord through the generalized entropy in bipartite quantum states"
    Bellomo, Guido
    Plastino, Angelo
    Majtey, Anna P.
    Plastino, Angel R.
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (11):
  • [30] Comment on “Quantum discord through the generalized entropy in bipartite quantum states”
    Guido Bellomo
    Angelo Plastino
    Anna P. Majtey
    Angel R. Plastino
    The European Physical Journal D, 2014, 68