Back to Basics: An Interpretable Multi-Class Grade Prediction Framework

被引:3
|
作者
Alharbi, Basma [1 ]
机构
[1] Univ Jeddah, Jeddah, Saudi Arabia
关键词
Student performance prediction; Next-term grade prediction; Interpretable machine learning; Rule-list algorithms; Multi-class classification; LEARNING ANALYTICS; PERFORMANCE; MODELS; RULES; CAPACITY; STUDENTS;
D O I
10.1007/s13369-021-06153-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Next-term grade prediction is a challenging problem. The objective of this problem is to predict students grades in new courses, given their grades in courses they have previously taken. Adopting various machine learning algorithms is a very common and straightforward approach to tackling this problem. However, such models are very difficult to interpret. That is, it is difficult to explain to a student (or a teacher) why the model predicted grade B for a given student for example. In this work, we shed light on the importance of building interpretable models for educational data mining tasks. Specifically, we propose a novel interpretable framework for multi-class grade prediction that is based on an optimal rule-list mining algorithm. Additionally, we evaluate our proposed framework on two private datasets and compare our results with baseline models. Our findings show that our proposed framework is capable of achieving higher prediction and interpretability values when compared to black-box models.
引用
收藏
页码:2171 / 2186
页数:16
相关论文
共 50 条
  • [21] A Diffusion-Based Framework for Multi-Class Anomaly Detection
    He, Haoyang
    Zhang, Jiangning
    Chen, Hongxu
    Chen, Xuhai
    Li, Zhishan
    Chen, Xu
    Wang, Yabiao
    Wang, Chengjie
    Xie, Lei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8472 - 8480
  • [22] A Unified Multi-Class Feature Selection Framework for Microarray Data
    Ding, Xiaojian
    Yang, Fan
    Ma, Fumin
    Chen, Shilin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3725 - 3736
  • [23] A Unified Framework of Binary Classifiers Ensemble for Multi-class Classification
    Takenouchi, Takashi
    Ishii, Shin
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 375 - 382
  • [24] Multi-class WHMBoost: An ensemble algorithm for multi-class imbalanced data
    Zhao, Jiakun
    Jin, Ju
    Zhang, Yibo
    Zhang, Ruifeng
    Chen, Si
    INTELLIGENT DATA ANALYSIS, 2022, 26 (03) : 599 - 614
  • [25] Multi-class GAN for generating multi-class images in object recognition
    Wang, Bingxu
    Lan, Jinhui
    Gao, Jiangjiang
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (05) : 897 - 906
  • [26] Combination of Multi-class SVM and Multi-class NDA for Face Recognition
    Abbasnejad, Iman
    Zomorodian, M. Javad
    Yazdi, Ehsan Tabatabaei
    2012 19TH INTERNATIONAL CONFERENCE MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2012, : 408 - 413
  • [27] The Influence of Multi-class Feature Selection on the Prediction of Diagnostic Phenotypes
    Lausser, Ludwig
    Szekely, Robin
    Schirra, Lyn-Rouven
    Kestler, Hans A.
    NEURAL PROCESSING LETTERS, 2018, 48 (02) : 863 - 880
  • [28] The multi-class Stackelberg prediction game with least squares loss
    Han, Shanheng
    Lin, Yangjun
    Wang, Jiaxin
    Zhang, Lei-Hong
    OPTIMIZATION AND ENGINEERING, 2024,
  • [29] Multi-Class Prediction of Mineral Resources Based on Deep Learning
    Ding, Liang
    Zhu, Yuelong
    Zhang, Pengcheng
    Dong, Hai
    Chen, Hao
    IEEE ACCESS, 2022, 10 : 111463 - 111476
  • [30] A Unified Framework for Multi-view Multi-class Object Pose Estimation
    Li, Chi
    Bai, Jin
    Hager, Gregory D.
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 263 - 281