Evaluation of Different Machine Learning Models for Photoplethysmogram Signal Artifact Detection

被引:0
|
作者
Athaya, Tasbiraha [1 ]
Choi, Sunwoong [1 ]
机构
[1] Kookmin Univ, Sch Elect Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
photoplethysmography; PPG; signal; artifact; noise; machine learning; detection; REAL-TIME;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photoplethysmography (PPG) is a convenient as well as a simple method to detect the change in blood volume level. It is recently in wide use for noninvasive measurement using optical technique. But PPG signals are very sensitive to various artifacts. These artifacts impact measurement accuracy in negative way which can provide a significant number of inaccurate diagnoses. Thus in this paper, we propose to build a system to detect PPG signal artifacts of the MIMIC database and divide them into two classes, one is acceptable and another is anomalous. Different machine learning algorithms were applied to see the classification accuracy. Among them, Random Forest (RF) performed the best with the accuracy +/- standard deviation of 84.00 +/- 2.89%.
引用
收藏
页码:1206 / 1208
页数:3
相关论文
共 50 条
  • [21] Efficient On-chip Acceleration of Machine Learning Models for Detection of RF Signal Modulation
    Forkel, Bianca
    Kallwies, Jan
    Wuensche, Hans-Joachim
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 74 - +
  • [22] A Preliminary Study on Photoplethysmogram (PPG) Signal Analysis for Reduction of Motion Artifact in Frequency Domain
    Cho, J. M.
    Sung, Y. K.
    Shin, K. W.
    Jung, D. J.
    Kim, Y. S.
    Kim, N. H.
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [23] Machine Learning Models for Drowsiness Detection
    Meda, Harshit
    Ganesh, Janapareddy Mohan Padmanabha
    Sahani, Ashish
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,
  • [24] ENHANCED HYPERTENSION CLASSIFIER BASED ON PHOTOPLETHYSMOGRAM SIGNAL USING STATISTICAL ANALYSIS AND EXTREME LEARNING MACHINE METHOD
    Rulaningtyas, Riries
    Wydiandhika, Aldaffan Sheva Ghifari
    Rahma, Osmalina Nur
    Ain, Khusnul
    Aminudin, Amilia
    Katherine
    Putri, Nathania Gisela
    Ittaqillah, Sayyidul Istighfar
    Chellappan, Kalaivani
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [25] Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion
    Rahmati, Omid
    Tahmasebipour, Nasser
    Haghizadeh, Ali
    Pourghasemi, Hamid Reza
    Feizizadeh, Bakhtiar
    GEOMORPHOLOGY, 2017, 298 : 118 - 137
  • [26] Predicting congenital syphilis cases: A performance evaluation of different machine learning models
    Teixeira, Igor Vitor
    Leite, Morgana Thalita da Silva
    Melo, Flavio Leandro de Morais
    Rocha, Elisson da Silva
    Sadok, Sara
    Carrarine, Ana Sofia Pessoa da Costa
    Santana, Marilia
    Rodrigues, Cristina Pinheiro
    Oliveira, Ana Maria de Lima
    Gadelha, Keduly Vieira
    de Morais, Cleber Matos
    Kelner, Judith
    Endo, Patricia Takako
    PLOS ONE, 2023, 18 (06):
  • [27] Label Propagation Techniques for Artifact Detection in Imbalanced Classes Using Photoplethysmogram Signals
    Macabiau, Clara
    Le, Thanh-Dung
    Albert, Kevin
    Shahriari, Mana
    Jouvet, Philippe
    Noumeir, Rita
    IEEE ACCESS, 2024, 12 : 81221 - 81235
  • [28] Evaluation of machine learning models for the detection of familial predisposition in Meniere's disease
    Roman-Naranjo, Pablo
    Escalera-Balsera, Alba
    Gallego-Martinez, Alvaro
    Ayuso, Carmen
    Dopazo, Joaquin
    Maria Millan, Jose
    Angel Moreno-Pelayo, Miguel
    Lopez-Escamez, Antonio
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 378 - 379
  • [29] Evaluation of Feature Transformation and Machine Learning Models on Early Detection of Diabetes Mellitus
    Linkon, Ahmed Ali
    Noman, Inshad Rahman
    Islam, Md Rashedul
    Bortty, Joy Chakra
    Bishnu, Kanchon Kumar
    Islam, Araf
    Hasan, Rakibul
    Abdullah, Masuk
    IEEE ACCESS, 2024, 12 : 165425 - 165440
  • [30] Evaluation of Machine Learning Models for Water Stress Detection Using Stem Impedance
    Cum, Federico
    Calvo, Stefano
    Sanginario, Alessandro
    Garlando, Umberto
    IEEE Transactions on AgriFood Electronics, 2024, 2 (02): : 314 - 322