Sparse interpolation refers to the exact recovery of a function as a short linear combination of basis functions from a limited number of evaluations. For multivariate functions, the case of the monomial basis is well studied, as is now the basis of exponential functions. Beyond the multivariate Chebyshev polynomial obtained as tensor products of univariate Chebyshev polynomials, the theory of root systems allows to define a variety of generalized multivariate Chebyshev polynomials that have connections to topics such as Fourier analysis and representations of Lie algebras. We present a deterministic algorithm to recover a function that is the linear combination of at most r such polynomials from the knowledge of r and an explicitly bounded number of evaluations of this function.
机构:
Univ Nacl La Plata, Dept Matemat, Buenos Aires, DF, Argentina
Inst Argentino Matemat Alberto P Calderon IAM CON, Buenos Aires, DF, ArgentinaUniv Nacl La Plata, Dept Matemat, Buenos Aires, DF, Argentina
Antezana, Jorge
Marzo, Jordi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
BGSMath, Gran Via 585, Barcelona 08007, SpainUniv Nacl La Plata, Dept Matemat, Buenos Aires, DF, Argentina
Marzo, Jordi
Ortega-Cerda, Joaquim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
BGSMath, Gran Via 585, Barcelona 08007, SpainUniv Nacl La Plata, Dept Matemat, Buenos Aires, DF, Argentina
机构:
Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah 30002, Saudi ArabiaTaibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah 30002, Saudi Arabia
机构:
Queen Mary Univ London, Sch Math Sci, London, England
Tech Univ Munich, Dept Math, Munich, GermanyQueen Mary Univ London, Sch Math Sci, London, England
Glau, Kathrin
Mahlstedt, Mirco
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Munich, Dept Math, Munich, GermanyQueen Mary Univ London, Sch Math Sci, London, England