A k-populations algorithm for clustering categorical data

被引:22
|
作者
Kim, DW [1 ]
Lee, K
Lee, D
Lee, KH
机构
[1] Korea Adv Inst Sci & Technol, Dept BioSyst, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Adv Informat Technol Res Ctr, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Elect Engn & Comp Sci, Taejon 305701, South Korea
关键词
clustering; categorical data; hierarchical algorithm; k-modes algorithm; fuzzy k-modes algorithm;
D O I
10.1016/j.patcog.2004.11.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the conventional k-modes-type algorithms for clustering categorical data are extended by representing the clusters of categorical data with k-populations instead of the hard-type centroids used in the conventional algorithms. Use of a population-based centroid representation makes it possible to preserve the uncertainty inherent in data sets as long as possible before actual decisions are made. The k-populations algorithm was found to give markedly better clustering results through various experiments. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1131 / 1134
页数:4
相关论文
共 50 条
  • [21] A subspace hierarchical clustering algorithm for categorical data
    Carbonera, Joel Luis
    Abel, Mara
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 509 - 516
  • [22] Improved Clustering for Categorical Data with Genetic Algorithm
    Sharma, Abha
    Thakur, R. S.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MICROELECTRONICS, COMPUTING & COMMUNICATION SYSTEMS, MCCS 2015, 2018, 453 : 67 - 76
  • [23] A parallel clustering algorithm for categorical data set
    Wang, YX
    Wang, ZH
    Li, XM
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 928 - 933
  • [24] Squeezer: An efficient algorithm for clustering categorical data
    Zengyou He
    Xiaofei Xu
    Shengchun Deng
    Journal of Computer Science and Technology, 2002, 17 : 611 - 624
  • [26] SELECTING THE BEST T OUT OF K-POPULATIONS
    BHATTACHARYA, PK
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 (03): : 915 - 916
  • [27] Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data
    Mau, Toan Nguyen
    Huynh, Van-Nam
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [28] Extensions to the k-means algorithm for clustering large data sets with categorical values
    Huang, ZX
    DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (03) : 283 - 304
  • [29] Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values
    Zhexue Huang
    Data Mining and Knowledge Discovery, 1998, 2 : 283 - 304
  • [30] k-mw-modes: An algorithm for clustering categorical matrix-object data
    Cao, Fuyuan
    Yu, Liqin
    Huang, Joshua Zhexue
    Liang, Jiye
    APPLIED SOFT COMPUTING, 2017, 57 : 605 - 614