Steering Acoustic Intensity Estimator Using a Single Acoustic Vector Hydrophone

被引:4
|
作者
Zhang, Guang Pu [1 ,2 ,3 ]
Zheng, Ce [1 ,2 ,3 ]
Lin, Wang Sheng [4 ]
机构
[1] Harbin Engn Univ, Acoust Sci & Technol Underwater Lab, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Minist Ind & Informat Technol, Key Lab Marine Informat Acquisit & Secur, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Engn Univ, Coll Underwater Acoust Engn, Harbin 150001, Heilongjiang, Peoples R China
[4] Hangzhou Appl Acoust Res Inst, Sci & Technol Sonar Lab, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTICLE-VELOCITY; SENSOR ARRAY; DIRECTION;
D O I
10.1155/2018/8526092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Azimuth angle estimation using a single vector hydrophone is a well-known problem in underwater acoustics. In the presence of multiple sources, a conventional complex acoustic intensity estimator (CAIE) cannot distinguish the azimuth angle of each source. In this paper, we propose a steering acoustic intensity estimator (SAIE) for azimuth angle estimation in the presence of interference. The azimuth angle of the interference is known in advance from the global positioning system (GPS) and compass data. By constructing the steering acoustic energy fluxes in the x and y channels of the acoustic vector hydrophone, the azimuth angle of interest can be obtained when the steering azimuth angle is directed toward the interference. Simulation results show that the SAIE outperforms the CAIE and is insensitive to the signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR). A sea trial is presented that verifies the validity of the proposed method.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Vector aeroacoustics for a uniform mean flow: Acoustic intensity and acoustic power
    Mao, Yijun (y.mao@soton.ac.uk), 1600, AIAA International, 12700 Sunrise Valley Drive, Suite 200Reston, VA, Virginia, Virginia 20191-5807, United States (56):
  • [22] Acoustic direction finding using single acoustic vector sensor under high reverberation
    Aktas, Metin
    Ozkan, Huseyin
    DIGITAL SIGNAL PROCESSING, 2018, 75 : 56 - 70
  • [23] Improved coherent signal bearing estimation with acoustic vector hydrophone array
    Ma B.-L.
    Cheng J.-F.
    1600, Chinese Institute of Electronics (38): : 519 - 524
  • [24] Multi-dimensional Parameter Estimation of Non-cooperative Underwater Acoustic Frequency-hopping Signal Based on Time-frequency Acoustic Intensity Method of Single Vector Hydrophone
    Wang Z.
    Wang Y.
    Wang Y.
    Liang G.
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (02): : 454 - 465
  • [25] Study of pattern time delay coding underwater acoustic communication technique based on a single vector hydrophone
    Zhang, Xiao
    Yin, Jingwei
    Du, Pengyu
    Guo, Longxiang
    Information Technology Journal, 2013, 12 (07) : 1444 - 1448
  • [26] Developing of Tough Hydrophone for High Intensity Acoustic Field at Low Frequency
    Okada, Nagaya
    Shiiba, Michihisa
    Takeuchi, Shinichi
    2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
  • [27] Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array
    Alibakhshi, Mohammad A.
    Kracht, Jonathan M.
    Cleveland, Robin O.
    Filoux, Erwan
    Ketterling, Jeffrey A.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 133 (05): : 3176 - 3185
  • [28] Surface and Underwater Acoustic Source Discrimination Based on Machine Learning Using a Single Hydrophone
    Zhang, Wen
    Wu, Yanqun
    Shi, Jian
    Leng, Hongze
    Zhao, Yun
    Guo, Jizhou
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (03)
  • [29] Vector acoustic intensity around a tuning fork
    Russell, Daniel A.
    Junell, Justin
    Ludwigsen, Daniel O.
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (02) : 99 - 103
  • [30] The Acoustic Center of a Measuring Hydrophone
    A. E. Isaev
    B. I. Khatamtaev
    Acoustical Physics, 2023, 69 : 93 - 101