Entanglement Hamiltonian of Interacting Fermionic Models

被引:46
|
作者
Toldin, Francesco Parisen [1 ]
Assaad, Fakher F. [1 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
关键词
DENSITY-MATRIX; DUALITY CONDITION; ENTROPY;
D O I
10.1103/PhysRevLett.121.200602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent numerical advances in the field of strongly correlated electron systems allow the calculation of the entanglement spectrum and entropies for interacting fermionic systems. An explicit determination of the entanglement (modular) Hamiltonian has proven to be a considerably more difficult problem, and only a few results are available. We introduce a technique to directly determine the entanglement Hamiltonian of interacting fermionic models by means of auxiliary field quantum Monte Carlo simulations. We implement our method on the one-dimensional Hubbard chain partitioned into two segments and on the Hubbard two-leg ladder partitioned into two chains. In both cases, we study the evolution of the entanglement Hamiltonian as a function of the physical temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Fermionic entanglement ambiguity in noninertial frames
    Montero, Miguel
    Martin-Martinez, Eduardo
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [32] Renyi entanglement entropy in fermionic chains
    Ares, Filiberto
    Esteve, Jose G.
    Falceto, Fernando
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (06)
  • [33] Fermionic entanglement that survives a black hole
    Martin-Martinez, Eduardo
    Leon, Juan
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [34] Fermionic multiscale entanglement renormalization ansatz
    Corboz, Philippe
    Vidal, Guifre
    PHYSICAL REVIEW B, 2009, 80 (16):
  • [35] Entanglement in fermionic chains with interface defects
    Eisler, Viktor
    Peschel, Ingo
    ANNALEN DER PHYSIK, 2010, 522 (09) : 679 - 690
  • [36] Fermionic entanglement extinction in noninertial frames
    Montero, Miguel
    Leon, Juan
    Martin-Martinez, Eduardo
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [37] Entanglement entropy in fermionic Laughlin states
    Haque, Masudul
    Zozulya, Oleksandr
    Schoutens, Kareljan
    PHYSICAL REVIEW LETTERS, 2007, 98 (06)
  • [38] Entanglement of several blocks in fermionic chains
    Ares, Filiberto
    Esteve, Jose G.
    Falceto, Fernando
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [39] Mode entanglement in fermionic and bosonic Harmonium
    Ernst, Jan Ole
    Tennie, Felix
    NEW JOURNAL OF PHYSICS, 2024, 26 (03):
  • [40] Quantum entanglement of fermionic local operators
    Nozaki, Masahiro
    Numasawa, Tokiro
    Matsuura, Shunji
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02): : 1 - 29