A low-dimensional model for the red blood cell

被引:2
|
作者
Pan, Wenxiao [1 ]
Caswell, Bruce [2 ]
Karniadakis, George Em [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Brown Univ, Div Engn, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
FREE LAYER; ERYTHROCYTE DEFORMABILITY; LARGE-DEFORMATION; VISCOSITY; FLOW; CYTOSKELETON; SIMULATIONS; DYNAMICS; DPD;
D O I
10.1039/c0sm00183j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The red blood cell (RBC) is an important determinant of the rheological properties of blood because of its predominant number density, special mechanical properties and dynamics. Here, we develop a new low-dimensional RBC model based on dissipative particle dynamics (DPD). The model is constructed as a closed-torus-like ring of 10 colloidal particles connected by wormlike chain springs combined with bending resistance. Each colloidal particle is represented by a single DPD particle with a repulsive core. The model is able to capture the essential mechanical properties of RBCs, and allows for economical exploration of the rheology of RBC suspensions. Specifically, we find that the linear and non-linear elastic deformations of healthy and malaria-infected cells match those obtained in optical tweezers experiments. Through simulations of some key features of blood flow in vessels, i.e., the cell-free layer (CFL), the Fahraeus effect and the Fahraeus-Lindqvist effect, we verify that the new model captures the essential shear flow properties of real blood, except for capillaries of sizes comparable to the cell diameter. Finally, we investigate the influence of a geometrical constriction in the flow on the enhancement of the downstream CFL. Our results are in agreement with recent experiments.
引用
收藏
页码:4366 / 4376
页数:11
相关论文
共 50 条
  • [21] Streaminglike diffusion in the low-dimensional stochastic pump model
    Corso, G
    Lichtenberg, AJ
    PHYSICAL REVIEW E, 1999, 59 (06): : 6652 - 6657
  • [22] PHASE-TRANSITION OF THE LOW-DIMENSIONAL TUNNELLING MODEL
    MORI, K
    FERROELECTRICS, 1981, 34 (04) : 203 - 207
  • [23] Feigenbaum's universality in a low-dimensional fluid model
    Meseguer, A
    Marques, F
    Sanchez, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (08): : 1587 - 1594
  • [24] A low-dimensional model for simulating three-dimensional cylinder flow
    Ma, X
    Karniadakis, GE
    JOURNAL OF FLUID MECHANICS, 2002, 458 : 181 - 190
  • [25] Spectral image destriping using a low-dimensional model
    Adler-Golden, S.
    Richtsmeier, S.
    Conforti, P.
    Bernstein, L.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [26] Feedback control of a cylinder wake low-dimensional model
    Cohen, K
    Siegel, S
    McLaughlin, T
    Gillies, E
    AIAA JOURNAL, 2003, 41 (07) : 1389 - 1391
  • [27] Low-dimensional optics
    Flory, Franois
    Escoubas, Ludovic
    Le Rouzo, Judikael
    Berginc, Gerard
    Lee, Cheng-Chung
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [28] Low-dimensional perovskites
    Bubnova, Olga
    NATURE NANOTECHNOLOGY, 2018, 13 (07) : 531 - 531
  • [29] Low-dimensional BEC
    Sevilla, FJ
    Grether, M
    Fortes, M
    de Llano, M
    Rojo, O
    Solis, MA
    Valladares, AA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 281 - 286
  • [30] Low-dimensional BEC
    F. J. Sevilla
    M. Grether
    M. Fortes
    M. de Llano
    O. Rojo
    M. A. Solís
    A. A. Valladares
    Journal of Low Temperature Physics, 2000, 121 : 281 - 286