Epitaxial growth of ZrO2 on GaN templates by oxide molecular beam epitaxy

被引:1
|
作者
Gu, Xing [1 ]
Izyumskaya, Natalia [1 ]
Avrutin, Vitaly [1 ]
Xiao, Bo [1 ]
Morkoc, Hadis [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Elect & Comp Engn, Richmond, VA 23284 USA
关键词
D O I
10.1063/1.2753719
中图分类号
O59 [应用物理学];
学科分类号
摘要
Molecular beam epitaxial growth of ZrO2 has been achieved on GaN (0001)/c-Al2O3 substrates employing a reactive H2O2 oxygen source. A low temperature buffer followed by in situ annealing and high temperature growth has been employed to attain monoclinic, (100)- oriented ZrO2 thin films. The typical full width at half maximum of a 30- nm- thick ZrO2 (100) film rocking curves is 0.4 arc deg and the root- mean- square surface roughness is similar to 4 angstrom. omega- 2 phi and pole figure x- ray diffraction patterns confirm the monoclinic structure of ZrO2. Data support an in- plane epitaxial relationship of ZrO2 [010] parallel to GaN [112(-)] and ZrO2 [001] parallel to GaN [11(-) 00]. X- ray diffraction and reflection high- energy electron diffraction analyses reveal in- plane compressive strain, which is mainly due to the lattice mismatch. (C) 2007 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Growth of GaN with warm ammonia by molecular beam epitaxy
    Kawaharazuka, A.
    Yoshizaki, T.
    Ploog, K. H.
    Horikoshi, Y.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 2025 - 2028
  • [32] Plasma assisted molecular beam epitaxy growth of GaN
    Einfeldt, S
    Birkle, U
    Thomas, C
    Fehrer, M
    Heinke, H
    Hommel, D
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1997, 50 (1-3): : 12 - 15
  • [33] GaN growth by compound source molecular beam epitaxy
    Honda, T
    Sato, K
    Hashimoto, T
    Shinohara, M
    Kawanishi, H
    JOURNAL OF CRYSTAL GROWTH, 2002, 237 (1-4 II) : 1008 - 1011
  • [34] Epitaxial growth of SrCaTiO3 films on GaN by molecular beam epitaxy with a TiO2 buffer layer
    Jin, E. N.
    Lang, A. C.
    Hardy, M. T.
    Nepal, N.
    Katzer, D. S.
    Storm, D. F.
    Downey, B. P.
    Meyer, D. J.
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (21)
  • [35] Homoepitaxial growth of GaN using molecular beam epitaxy
    Gassmann, A
    Suski, T
    Newman, N
    Kisielowski, C
    Jones, E
    Weber, ER
    LilientalWeber, Z
    Rubin, MD
    Helava, HI
    Grzegory, I
    Bockowski, M
    Jun, J
    Porowski, S
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (04) : 2195 - 2198
  • [36] Growth of GaN on Si(0001) by molecular beam epitaxy
    Lee, CD
    Sagar, A
    Feenstra, RM
    Sarney, WL
    Salamanca-Riba, L
    Hsu, JWP
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2001, 188 (02): : 595 - 599
  • [37] Growth of GaN on Ge(111) by molecular beam epitaxy
    Lieten, R. R.
    Degroote, S.
    Cheng, K.
    Leys, M.
    Kuijk, M.
    Borghs, G.
    APPLIED PHYSICS LETTERS, 2006, 89 (25)
  • [38] Growth of Hf and HfN on GaN by molecular beam epitaxy
    Parkhomovsky, A
    Ishaug, BE
    Dabiran, AM
    Cohen, PI
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (04): : 2162 - 2165
  • [39] The initiation of GaN growth by molecular beam epitaxy on GaN composite substrates
    Cheng, TS
    Novikov, SV
    Lebedev, VB
    Campion, RP
    Jeffs, NJ
    Melnik, YV
    Tsvetkov, DV
    Stepanov, SI
    Cherenkov, AE
    Dmitriev, VA
    Korakakis, D
    Hughes, OH
    Foxon, CT
    JOURNAL OF CRYSTAL GROWTH, 1999, 197 (1-2) : 12 - 18
  • [40] Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy
    Kushvaha, S. S.
    Pal, P.
    Shukla, A. K.
    Joshi, Amish G.
    Gupta, Govind
    Kumar, M.
    Singh, S.
    Gupta, Bipin K.
    Haranath, D.
    AIP ADVANCES, 2014, 4 (02):