Diabetes Disease Prediction Using Machine Learning Algorithms

被引:6
|
作者
Lyngdoh, Arwatki Chen [1 ]
Choudhury, Nurul Amin [1 ]
Moulik, Soumen [1 ]
机构
[1] Natl Inst Technol Meghalaya, Dept Comp Sci & Engn, Shillong, Meghalaya, India
关键词
Diabetes disease; Machine Learning (ML); Disease risk analysis; Confusion Matrix; Scikit-learn; Body mass Index (BMI); Precision; Recall; F1-Score; Pandas; NumPy and [!text type='Python']Python[!/text;
D O I
10.1109/IECBES48179.2021.9398759
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper deals with the prediction of Diabetes Disease by performing an analysis of five supervised machine learning algorithms, i.e. K-Nearest Neighbors, Naive Baye, Decision Tree Classifier, Random Forest and Support Vector Machine. Further, by incorporating all the present risk factors of the dataset, we have observed a stable accuracy after classifying and performing cross-validation. We managed to achieve a stable and highest accuracy of 76% with KNN classifier and remaining all other classifiers also give a stable accuracy of above 70%. We analyzed why specific Machine Learning classifiers do not yield stable and good accuracy by visualizing the training and testing accuracy and examining model overfitting and model underfitting. The main goal of this paper is to find the most optimal results in terms of accuracy and computational time for Diabetes disease prediction.
引用
收藏
页码:517 / 521
页数:5
相关论文
共 50 条
  • [21] Diabetes prediction using feature engineering and machine learning algorithms with security
    Arora, Jyoti
    Rathee, Sonia
    Gahlan, Mamta
    Shalu, Amita Yadav
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2024, 27 (02) : 273 - 284
  • [22] Classification and prediction of diabetes disease using machine learning paradigm
    Maniruzzaman, Md.
    Rahman, Md. Jahanur
    Ahammed, Benojir
    Abedin, Md. Menhazul
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2020, 8 (01)
  • [23] Analysis and Prediction of Diabetes Disease Using Machine Learning Methods
    Samet, Sarra
    Laouar, Mohamed Ridda
    Bendib, Issam
    Eom, Sean
    INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY, 2022, 14 (01)
  • [24] Classification and prediction of diabetes disease using machine learning paradigm
    Md. Maniruzzaman
    Md. Jahanur Rahman
    Benojir Ahammed
    Md. Menhazul Abedin
    Health Information Science and Systems, 8
  • [25] Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms
    Kang, Byung Soo
    Lee, Seon Ui
    Hong, Subeen
    Choi, Sae Kyung
    Shin, Jae Eun
    Wie, Jeong Ha
    Jo, Yun Sung
    Kim, Yeon Hee
    Kil, Kicheol
    Chung, Yoo Hyun
    Jung, Kyunghoon
    Hong, Hanul
    Park, In Yang
    Ko, Hyun Sun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [26] A comprehensive review for chronic disease prediction using machine learning algorithms
    Rakibul Islam
    Azrin Sultana
    Mohammad Rashedul Islam
    Journal of Electrical Systems and Information Technology, 11 (1)
  • [27] Automated Prediction of Liver Disease using Machine Learning (ML) Algorithms
    Srivastava, Aviral
    Kumar, V. Vineeth
    Mahesh, T. R.
    Vivek, V.
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [28] Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster
    Yuvaraj, N.
    SriPreethaa, K. R.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 1 - 9
  • [29] Prediction of Coronary Heart Disease using Supervised Machine Learning Algorithms
    Krishnani, Divya
    Kumari, Anjali
    Dewangan, Akash
    Singh, Aditya
    Naik, Nenavath Srinivas
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 367 - 372
  • [30] Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms
    Byung Soo Kang
    Seon Ui Lee
    Subeen Hong
    Sae Kyung Choi
    Jae Eun Shin
    Jeong Ha Wie
    Yun Sung Jo
    Yeon Hee Kim
    Kicheol Kil
    Yoo Hyun Chung
    Kyunghoon Jung
    Hanul Hong
    In Yang Park
    Hyun Sun Ko
    Scientific Reports, 13