Transfer Function Estimation in System Identification Toolbox via Vector Fitting

被引:80
|
作者
Ozdemir, Ahmet Arda [1 ]
Gumussoy, Suat [1 ]
机构
[1] MathWorks, 3 Apple Hill Dr, Natick, MA 01760 USA
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Frequency domain identification; parameter constraints; orthonormal vector fitting; Sanathanan-Koerner (SK) iterations; Instrumental Variable (IV) iterations; FREQUENCY-DOMAIN RESPONSES; RATIONAL APPROXIMATION;
D O I
10.1016/j.ifacol.2017.08.1026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers black- and grey-box continuous-time transfer function estimation from frequency response measurements. The first contribution is a bilinear mapping of the original problem from the imaginary axis onto the unit disk. This improves the numerics of the underlying Sanathanan-Koerner iterations and the more recent instrumental-variable iterations. Orthonormal rational basis functions on the unit disk are utilized. Each iteration step necessitates a minimal state-space realization with these basis functions. One such derivation is the second contribution. System identification with these basis functions yield zero-pole-gain models. The third contribution is an efficient method to express transfer function coefficient constraints in terms of the orthonormal rational basis functions. This allows for estimating transfer function models with arbitrary relative degrees (including improper models), along with other fixed and bounded parameter values. The algorithm is implemented in the tfest function in System Identification Toolbox (Release 2016b, for use with MATLAB) for frequency domain data. Two examples are presented to demonstrate the algorithm performance. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6232 / 6237
页数:6
相关论文
共 50 条
  • [21] Regularization Features in the System Identification Toolbox
    Ljung, Lennart
    Shigh, Rajiv
    Chen, Tianshi
    IFAC PAPERSONLINE, 2015, 48 (28): : 745 - 750
  • [22] Nonparametric System Identification Matlab Toolbox
    Mzyk, Grzegorz
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 691 - 698
  • [24] Order Estimation for Time-Domain Vector Fitting
    Moon, Se-Jung
    Cangellaris, A. C.
    ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS, 2009, : 69 - +
  • [26] The NNSYSID toolbox - A MATLAB(R) toolbox for system identification with neural networks
    Norgaard, M
    Ravn, O
    Hansen, LK
    Poulsen, NK
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 1996, : 374 - 379
  • [27] A SYSTEM IDENTIFICATION METHOD USING VECTOR SPACE BASE FUNCTION
    Lu Ziyi Yang Luxi He Zhenva(DSP Lab.
    Journal of Electronics(China), 1999, (02) : 146 - 151
  • [28] Seismic wavelet estimation via a system identification method
    Shaoshui Wang Yongshou Dai and Fang Wang College of Information and Control Engineering
    Earthquake Science, 2009, (05) : 487 - 492
  • [29] Seismic wavelet estimation via a system identification method
    Wang, Shaoshui
    Dai, Yongshou
    Wang, Fang
    EARTHQUAKE SCIENCE, 2009, 22 (05) : 487 - 492
  • [30] Extracting Analytical Nonlinear Models from Analog Circuits by Recursive Vector Fitting of Transfer Function Trajectories
    De Jonghe, Dimitri
    Deschrijver, Dirk
    Dhaene, Tom
    Gielen, Georges
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 1448 - 1453