A large-scale evaluation framework for EEG deep learning architectures

被引:8
|
作者
Heilmeyer, Felix A. [1 ]
Schirrmeister, Robin T. [1 ]
Fiederer, Lukas D. J. [1 ]
Voelker, Martin [1 ]
Behncke, Joos [1 ]
Ball, Tonio [1 ]
机构
[1] Univ Med Ctr Freiburg, Translat Neurotechnol Lab, Freiburg, Germany
关键词
EEG; BCI; Deep Learning; Convolutional Neural Networks; Braindecode; EEGNet; FBCSP; Performance Comparison;
D O I
10.1109/SMC.2018.00185
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.
引用
收藏
页码:1039 / 1045
页数:7
相关论文
共 50 条
  • [31] Deep learning large-scale drug discovery and repurposing
    Yu, Min
    Li, Weiming
    Yu, Yunru
    Zhao, Yu
    Xiao, Lizhi
    Lauschke, Volker M.
    Cheng, Yiyu
    Zhang, Xingcai
    Wang, Yi
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (08): : 600 - 614
  • [32] HammingMesh: A Network Topology for Large-Scale Deep Learning
    Hoefler, Torsten
    Bonato, Tommaso
    De Sensi, Daniele
    Di Girolamo, Salvatore
    Li, Shigang
    Heddes, Marco
    Belk, Jon
    Goel, Deepak
    Castro, Miguel
    Scott, Steve
    SC22: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2022,
  • [33] HammingMesh: A Network Topology for Large-Scale Deep Learning
    Hoefler, Torsten
    Bonoto, Tommaso
    De Sensi, Daniele
    Di Girolamo, Salvatore
    Li, Shigang
    Heddes, Marco
    Goel, Deepak
    Castro, Miguel
    Scott, Steve
    Communications of the ACM, 2024, 67 (12) : 97 - 105
  • [34] On Efficient Training of Large-Scale Deep Learning Models
    Shen, Li
    Sun, Yan
    Yu, Zhiyuan
    Ding, Liang
    Tian, Xinmei
    Tao, Dacheng
    ACM Computing Surveys, 57 (03):
  • [35] Designing an Efficient Framework for Large-Scale Data Processing and Analysis Based on Deep Learning Technology
    Liu, Qian
    Wang, Xingda
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 269 - 274
  • [36] A surface graph based deep learning framework for large-scale urban mesh semantic segmentation
    Yang, Yetao
    Tang, Rongkui
    Xia, Mengjiao
    Zhang, Chen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 119
  • [37] A Multimodal Data Fusion and Deep Learning Framework for Large-Scale Wildfire Surface Fuel Mapping
    Alipour, Mohamad
    La Puma, Inga
    Picotte, Joshua
    Shamsaei, Kasra
    Rowell, Eric
    Watts, Adam
    Kosovic, Branko
    Ebrahimian, Hamed
    Taciroglu, Ertugrul
    FIRE-SWITZERLAND, 2023, 6 (02):
  • [38] A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy
    Li, Yangtao
    Bao, Tengfei
    Chen, Hao
    Zhang, Kang
    Shu, Xiaosong
    Chen, Zexun
    Hu, Yuhan
    MEASUREMENT, 2021, 178
  • [39] A Framework of Large-Scale Peer-to-Peer Learning System
    Luo, Yongkang
    Han, Peiyi
    Luo, Wenjian
    Xue, Shaocong
    Chen, Kesheng
    Song, Linqi
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II, 2024, 14448 : 27 - 41
  • [40] A large-scale graph learning framework of technological gatekeepers by MapReduce
    School of Economics and Management, Beihang University, Beijing, China
    不详
    Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops, IPDPSW, (1997-2003):