Zn2+ biosorption by Oscillatoria anguistissima

被引:97
|
作者
Ahuja, P [1 ]
Gupta, R [1 ]
Saxena, RK [1 ]
机构
[1] Univ Delhi, Dept Microbiol, New Delhi 110021, India
关键词
biosorption; zinc; Oscillatoria; biomass; equilibrium kinetics;
D O I
10.1016/S0032-9592(98)00072-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oscillatoria anguistissima showed a very high capacity for Zn2+ biosorption (641 mg g(-1) dry biomass at a residual concentration of 129.2 ppm) from solution and was comparable to the commercial ion-exchange resin IRA-400C. Zn2+ biosorption was rapid, pH dependent and temperature independent phenomenon. Zn2+ adsorption followed both Langmuir and Freundlich models. The specific uptake (mg g(-1) dry biomass) of metal decreased with increase in biomass concentration. Pretreatment of biomass did not significantly affect the biosorption capacity of O. anguistissima. The biosorption of zinc by O. anguistissima was an ion-exchange phenomenon as a large concentration of magnesium ions were released during zinc adsorption. The zinc bound to the biomass could be effectively stripped using EDTA (10 mM) and the biomass was effectively used for multiple sorption-desorption cycles with in-between charging of the biomass with tap water washings. The native biomass could also efficiently remove zinc from effluents obtained from Indian mining industries. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:77 / 85
页数:9
相关论文
共 50 条
  • [31] Elucidation of Zn2+ Binding in the Zn2+/H+ Antiporter YiiP
    Fan, Shujie
    Lopez-Redondo, Maria
    Stokes, David L.
    Beckstein, Oliver
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 72A - 72A
  • [32] Equilibrium Biosorption of Zn2+ and Ni2+ Ions from Monometallic and Bimetallic Solutions by Crab Shell Biomass
    Morales-Barrera, Liliana
    Cristiani-Urbina, Eliseo
    PROCESSES, 2022, 10 (05)
  • [33] Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum
    Ajjabi, Leila Chebil
    Chouba, Lassaad
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2009, 90 (11) : 3485 - 3489
  • [34] Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw
    Gorgievski, Milan
    Bozic, Dragana
    Stankovic, Velizar
    Strbac, Nada
    Serbula, Snezana
    ECOLOGICAL ENGINEERING, 2013, 58 : 113 - 122
  • [35] Significance of Zn2+ signaling in cognition: Insight from synaptic Zn2+ dyshomeostasis
    Takeda, Atsushi
    JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY, 2014, 28 (04) : 393 - 396
  • [36] Zn2+ fluorescent chemosensors and the influence of their spacer length on tuning Zn2+ selectivity
    Kim, TW
    Park, JH
    Hong, JI
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 2002, (05): : 923 - 927
  • [37] Identification of the Zn2+ Binding Site and Mode of Operation of a Mammalian Zn2+ Transporter
    Ohana, Ehud
    Hoch, Eitan
    Keasar, Chen
    Kambe, Taiho
    Yifrach, Ofer
    Hershfinkel, Michal
    Sekler, Israel
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (26) : 17677 - 17686
  • [38] A protocol to measure lysosomal Zn2+ release through a encoded Zn2+ indicator
    Gu, Mingxue
    Hu, Meiqin
    Minckley, Taylor
    Pinchi, Prateeksunder
    Xu, Haoxing
    Qin, Yan
    Du, Wanlu
    STAR PROTOCOLS, 2022, 3 (02):
  • [39] Zn2+ at a cellular crossroads
    Liang, Xiaomeng
    Dempski, Robert E.
    Burdette, Shawn C.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2016, 31 : 120 - 125
  • [40] BINDING OF ZN2+ BY BUFFERS
    COLLIER, HB
    CLINICAL CHEMISTRY, 1979, 25 (03) : 495 - 496