Polarized Nonresonant Raman Spectra of Graphene Nanoribbons

被引:10
|
作者
Luo, Guangfu [1 ,2 ,3 ,4 ]
Wang, Lu [4 ]
Li, Hong [1 ,2 ]
Qin, Rui [1 ,2 ]
Zhou, Jing [1 ,2 ]
Li, Linze [1 ,2 ]
Gao, Zhengxiang [1 ,2 ]
Mei, Wai-Ning [4 ]
Lu, Jing [1 ,2 ]
Nagase, Shigeru [3 ]
机构
[1] Peking Univ, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[3] Natl Inst Nat Sci, Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan
[4] Univ Nebraska, Dept Phys, Omaha, NE 68182 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2011年 / 115卷 / 50期
基金
美国国家科学基金会;
关键词
SPECTROSCOPY; CARBON;
D O I
10.1021/jp202870g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the nonresonant Raman scattering of armchair and zigzag graphene nanoribbons (GNRs) using density functional perturbation theory. We find that, in both GNR types, the Raman spectrum is extremely polarized along the ribbon axis direction with the scattering intensity being over 10(2) times greater than those of the other polarizations because of the geometrical confinement. Along the dominant polarization direction, the scattering intensity and frequency oscillate strongly with the ribbon width in the armchair GNRs, while the scattering intensity initially increases and then decreases with the ribbon width and the frequency monotonically changes with the ribbon width in the zigzag GNRs. Such a difference is closely associated with the different width dependences of band structure between the two types of GNRs.
引用
收藏
页码:24463 / 24468
页数:6
相关论文
共 50 条
  • [31] Spin polarized quantum pump effect in zigzag graphene nanoribbons
    Grichuk, E. S.
    Manykin, E. A.
    JETP LETTERS, 2011, 93 (07) : 372 - 376
  • [32] Spin polarized quantum pump effect in zigzag graphene nanoribbons
    E. S. Grichuk
    E. A. Manykin
    JETP Letters, 2011, 93
  • [33] Field effect on spin-polarized transport in graphene nanoribbons
    Guo, Jing
    Gunlycke, D.
    White, C. T.
    APPLIED PHYSICS LETTERS, 2008, 92 (16)
  • [34] The effect of size quantization on the electron spectra of graphene nanoribbons
    Gospodarev, I. A.
    Grishaev, V. I.
    Manzhelii, E. V.
    Sirenko, V. A.
    Syrkin, E. S.
    Feodosyev, S. B.
    LOW TEMPERATURE PHYSICS, 2020, 46 (02)
  • [35] Absorption spectra of graphene nanoribbons in a composite magnetic field
    Li, T. S.
    Wu, M. F.
    Hsieh, C. T.
    SOLID STATE COMMUNICATIONS, 2015, 220 : 61 - 66
  • [36] Spectra of graphene nanoribbons with armchair and zigzag boundary conditions
    Freitas, Pedro
    Siegl, Petr
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (10)
  • [37] Efficient and automated quantum chemical calculation of rovibrational nonresonant Raman spectra
    Erfort, Sebastian
    Tschoepe, Martin
    Rauhut, Guntram
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (12):
  • [38] Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons
    Overbeck, Jan
    Barin, Gabriela Borin
    Daniels, Colin
    Perrin, Mickael L.
    Liang, Liangbo
    Braun, Oliver
    Darawish, Rimah
    Burkhardt, Bryanna
    Dumslaff, Tim
    Wang, Xiao-Ye
    Narita, Akimitsu
    Muellen, Klaus
    Meunier, Vincent
    Fasel, Roman
    Calame, Michel
    Ruffieux, Pascal
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2019, 256 (12):
  • [39] Polarized Raman and infrared spectra of taurine crystals
    Freire, PTC
    Melo, FEA
    Mendes, J
    JOURNAL OF RAMAN SPECTROSCOPY, 1996, 27 (07) : 507 - 512
  • [40] POLARIZED RAMAN SPECTRA OF BETA-QUARTZ
    BATES, JB
    QUIST, AS
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (04): : 1528 - +