Hormander's Hypoelliptic Theorem for Nonlocal Operators

被引:2
|
作者
Hao, Zimo [1 ]
Peng, Xuhui [2 ]
Zhang, Xicheng [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha, Hunan, Peoples R China
关键词
Hormander's conditions; Malliavin calculus; Hypoellipticity; Nonlocal operators; FUNDAMENTAL-SOLUTIONS; MALLIAVIN CALCULUS; SMOOTH DENSITIES; EQUATIONS; REGULARITY; JUMPS; SDES;
D O I
10.1007/s10959-020-01020-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we show the Hormander hypoelliptic theorem for nonlocal operators by a purely probabilistic method: the Malliavin calculus. Roughly speaking, under general Hormander's Lie bracket conditions, we show the regularization effect of discontinuous Levy noises for possibly degenerate stochastic differential equations with jumps. To treat the large jumps, we use the perturbation argument together with interpolation techniques and some short time asymptotic estimates of the semigroup. As an application, we show the existence of fundamental solutions for operator partial derivative(t)-K, where K is the following nonlocal kinetic operator: K f (x, v) = p.v integral(Rd) (f (x, v + w) - f (x, v)) kappa (x, v, w)/vertical bar w vertical bar(d+alpha) dw + v . del(x) f (x, v) + b (x, v) . del(v) f (x, v). Here kappa(-1)(0) <= kappa(x, v, w) <= kappa(0) belongs to C-b(infinity) (R-3d) and is symmetric in w, p.v. stands for the Cauchy principal value, and b is an element of C-b(infinity) (R-2d; R-d).
引用
收藏
页码:1870 / 1916
页数:47
相关论文
共 50 条
  • [41] Sparse Domination Theorem for Multilinear Singular Integral Operators with Lr-Hormander Condition
    Li, Kangwei
    MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (02) : 253 - 265
  • [42] Fundamental Solutions and Local Solvability for Nonsmooth Hormander's Operators
    Bramanti, Marco
    Brandolini, Luca
    Manfredini, Maria
    Pedroni, Marco
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1182) : I - +
  • [43] GEVREY REGULARITY OF HORMANDER OPERATORS
    DERRIDJ, M
    ZUILY, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (04): : 317 - &
  • [44] CLASSICAL OPERATORS ON THE HORMANDER ALGEBRAS
    Jose Beltran, Maria
    Bonet, Jose
    Fernandez, Carmen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (02) : 637 - 652
  • [45] A REMARK ON HORMANDER UNIQUENESS THEOREM
    DELSANTO, D
    STRAYMOND, X
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) : 721 - 725
  • [46] CLASS OF PARTIALLY HYPOELLIPTIC OPERATORS
    BOLLEY, P
    CAMUS, J
    HELFFER, B
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1976, 55 (02): : 131 - 171
  • [47] GEVREY REGULARITY OF HORMANDER OPERATORS
    DERRIDJ, M
    ZUILY, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1973, 52 (03): : 309 - 336
  • [48] ON A CLASS OF HYPOELLIPTIC DIFFERENTIAL OPERATORS
    KATO, Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (01): : 33 - &
  • [49] Spectral properties of hypoelliptic operators
    Eckmann, JP
    Hairer, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 233 - 253
  • [50] EIGENVALUES OF A CLASS OF HYPOELLIPTIC OPERATORS
    MENIKOFF, A
    SJOSTRAND, J
    MATHEMATISCHE ANNALEN, 1978, 235 (01) : 55 - 85