REDUCTIONS OF TENSOR CATEGORIES MODULO PRIMES

被引:0
|
作者
Etingof, Pavel [1 ]
Gelaki, Shlomo [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Good prime; Reduction modulo a prime; Tensor categories; MORITA EQUIVALENCE; FUSION CATEGORIES; ALGEBRAS;
D O I
10.1080/00927872.2011.617267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study good (i.e., semisimple) reductions of semisimple rigid tensor categories modulo primes. A prime p is called good for a semisimple rigid tensor category (sic) if such a reduction exists (otherwise, it is called bad). It is clear that a good prime must be relatively prime to the Muger squared norm vertical bar V vertical bar(2) of any simple object V of (sic). We show, using the Ito-Michler theorem in finite group theory, that for group-theoretical fusion categories, the converse is true. While the converse is false for general fusion categories, we obtain results about good and bad primes for many known fusion categories (e.g., for Verlinde categories). We also state some questions and conjectures regarding good and bad primes.
引用
收藏
页码:4634 / 4643
页数:10
相关论文
共 50 条
  • [1] Questions about the reductions modulo primes of anelliptic curve
    Cojocaru, AC
    NUMBER THEORY, 2004, 36 : 61 - 79
  • [2] REDUCTIONS MODULO PRIMES OF SYSTEMS OF POLYNOMIAL EQUATIONS AND ALGEBRAIC DYNAMICAL SYSTEMS
    D'Andrea, Carlos
    Ostafe, Alina
    Shparlinski, Igor E.
    Sombra, Martin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1169 - 1198
  • [3] SUBORDER POLYNOMIALS MODULO PRIMES
    Lehman, J. Larry
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 28 (01): : 45 - 80
  • [4] Periods of orbits modulo primes
    Akbary, Amir
    Ghioca, Dragos
    JOURNAL OF NUMBER THEORY, 2009, 129 (11) : 2831 - 2842
  • [5] Some Congruences Modulo Primes
    Winfried Kohnen
    Monatshefte für Mathematik, 1999, 127 : 321 - 324
  • [6] PRIMES IN PROGRESSIONS MODULO PR
    GALLAGHE.PX
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 926 - &
  • [7] Consecutive primes modulo 4
    Ruzsa, IZ
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2001, 12 (04): : 489 - 503
  • [8] On the Jones polynomial modulo primes
    Aiello, Valeriano
    Baader, Sebastian
    Ferretti, Livio
    GLASGOW MATHEMATICAL JOURNAL, 2023, 65 (03) : 730 - 734
  • [9] Periods of rational maps modulo primes
    Robert L. Benedetto
    Dragos Ghioca
    Benjamin Hutz
    Pär Kurlberg
    Thomas Scanlon
    Thomas J. Tucker
    Mathematische Annalen, 2013, 355 : 637 - 660
  • [10] Polynomial products modulo primes and applications
    Klurman, Oleksiy
    Munsch, Marc
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (03): : 577 - 593