Density-Based Statistical Clustering: Enabling Sidefire Ultrasonic Traffic Sensing in Smart Cities

被引:2
|
作者
Luecken, Volker [1 ]
Voss, Nils [1 ]
Schreier, Julien [1 ]
Baag, Thomas [1 ]
Gehring, Michael [1 ]
Raschen, Matthias [1 ]
Lanius, Christian [1 ]
Leupers, Rainer [1 ]
Ascheid, Gerd [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Commun Technol & Embedded Syst ICE, Aachen, Germany
关键词
RADAR MEASUREMENT; VEHICLE; SYSTEM;
D O I
10.1155/2018/9317291
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic routing is a central challenge in the context of urban areas, with a direct impact on personal mobility, traffic congestion, and air pollution. In the last decade, the possibilities for traffic flow control have improved together with the corresponding management systems. However, the lack of real-time traffic flow information with a city-wide coverage is a major limiting factor for an optimum operation. Smart City concepts seek to tackle these challenges in the future by combining sensing, communications, distributed information, and actuation. This paper presents an integrated approach that combines smart street lamps with traffic sensing technology. More specifically, infrastructure-based ultrasonic sensors, which are deployed together with a street light system, are used for multilane traffic participant detection and classification. Application of these sensors in time-varying reflective environments posed an unresolved problem for many ultrasonic sensing solutions in the past and therefore widely limited the dissemination of this technology. We present a solution using an algorithmic approach that combines statistical standardization with clustering techniques from the field of unsupervised learning. By using a multilevel communication concept, centralized and decentralized traffic information fusion is possible. The evaluation is based on results from automotive test track measurements and several European real-world installations.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] An Efficient Density-Based Algorithm for Data Clustering
    Theljani, Foued
    Laabidi, Kaouther
    Zidi, Salah
    Ksouri, Moufida
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2017, 26 (04)
  • [42] Anytime density-based clustering of complex data
    Son T. Mai
    Xiao He
    Jing Feng
    Claudia Plant
    Christian Böhm
    Knowledge and Information Systems, 2015, 45 : 319 - 355
  • [43] TOBAE: A Density-based Agglomerative Clustering Algorithm
    Shehzad Khalid
    Shahid Razzaq
    Journal of Classification, 2015, 32 : 241 - 267
  • [44] Performance evaluation of density-based clustering methods
    Aliguliyev, Ramiz M.
    INFORMATION SCIENCES, 2009, 179 (20) : 3583 - 3602
  • [45] Geometric algorithms for density-based data clustering
    Chen, DZ
    Smid, M
    Xu, B
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 284 - 296
  • [46] Density-based clustering for exploration of analytical data
    Daszykowski, M
    Walczak, B
    Massart, DL
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2004, 380 (03) : 370 - 372
  • [47] The SpectACl of Nonconvex Clustering: A Spectral Approach to Density-Based Clustering
    Hess, Sibylle
    Duivesteijn, Wouter
    Honysz, Philipp
    Morik, Katharina
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3788 - 3795
  • [48] Multi-step density-based clustering
    Brecheisen, S
    Kriegel, HP
    Pfeifle, M
    KNOWLEDGE AND INFORMATION SYSTEMS, 2006, 9 (03) : 284 - 308
  • [49] Share density-based clustering of income data
    Condino, Francesca
    STATISTICAL ANALYSIS AND DATA MINING, 2023, 16 (04) : 336 - 347
  • [50] Meteor shower detection with density-based clustering
    Sugar, Glenn
    Moorhead, Althea
    Brown, Peter
    Cooke, William
    METEORITICS & PLANETARY SCIENCE, 2017, 52 (06) : 1048 - 1059