A self-attention based global feature enhancing network for semantic segmentation of large-scale urban street-level point clouds

被引:13
|
作者
Chen, Qi [1 ,2 ]
Zhang, Zhenxin [1 ,2 ]
Chen, Siyun [1 ,2 ]
Wen, Siyuan [1 ,2 ]
Ma, Hao [3 ]
Xu, Zhihua [4 ]
机构
[1] Capital Normal Univ, Coll Resource Environm & Tourism, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Key Lab 3D Informat Acquisit & Applicat, Minist Educ, Beijing 100048, Peoples R China
[3] Beijing Geovis Informat Technol Co Ltd, Beijing 100070, Peoples R China
[4] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Urban street; Large-scale point clouds; Semantic segmentation; Attention mechanism; Global feature; RANDOM FOREST CLASSIFIER;
D O I
10.1016/j.jag.2022.102974
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Point clouds of large-scale urban street scenes contain large quantities of object categories and rich semantic information. The semantic segmentation is the basis and key to subsequent essential applications, such as digital twin engineering and city information model. The global feature of point clouds in large-scale scenes can provide long-range context information, which is critical to high-quality semantic segmentation. However, the learning of global spatial saliency considering class label constraints is often ignored in the feature representation of some deep learning models. With regard to this, we propose a Global Feature Self-Attention Encoding (GFSAE) module and a Weighted Semantic Mapping (WSM) module to make the semantic segmentation model of point clouds in large-scale urban street scene focus more on the global salient feature expression by self-attention enhancement channel by channel and take into account the constraints of semantic categories to learn a better semantic segmentation model for urban street scenes. The experiments are performed on the Semantic3D dataset and our own collected vehicle Mobile Laser Scanning (MLS) point cloud dataset. The segmentation results show that the GFSAE and the WSM proposed by us can improve the semantic segmentation of point clouds in large-scale urban street scenes and prove the effectiveness of our model compared with other state-of-the-art methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Lei Wang
    Jiaji Wu
    Xunyu Liu
    Xiaoliang Ma
    Jun Cheng
    Complex & Intelligent Systems, 2022, 8 : 3833 - 3845
  • [22] Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph
    Wang, Lei
    Wu, Jiaji
    Liu, Xunyu
    Ma, Xiaoliang
    Cheng, Jun
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (05) : 3833 - 3845
  • [23] Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning
    Ai Da
    Zhang Xiaoyang
    Xu Ce
    Qin Siyu
    Yuan Hui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [24] Active Spatio-Fine Enhancement Network for Semantic Segmentation of Large-Scale Point Clouds
    Chen, Xijiang
    Wang, Zihao
    Zhao, Bufan
    Qin, Mengjiao
    Han, Xianquan
    Ozdemir, Emirhan
    IEEE Sensors Journal, 2024, 24 (22): : 37358 - 37379
  • [25] Active Spatio-Fine Enhancement Network for Semantic Segmentation of Large-Scale Point Clouds
    Chen, Xijiang
    Wang, Zihao
    Zhao, Bufan
    Qin, Mengjiao
    Han, Xianquan
    Ozdemir, Emirhan
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 37358 - 37379
  • [26] FAR-Net: Semantic Segmentation of Large-Scale Point Clouds Based on Feature Aggregation and Recoding for Aerial Computing
    Zhang, Jianlong
    Chen, Huangwei
    Wang, Bin
    Fang, Guangzu
    Zhou, Yang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5217 - 5227
  • [27] Sampling-attention deep learning network with transfer learning for large-scale urban point cloud semantic segmentation
    Zhou, Yunxiang
    Ji, Ankang
    Zhang, Limao
    Xue, Xiaolong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 117
  • [28] Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network
    Yang J.
    Li B.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (07): : 840 - 853
  • [29] Feature fusion network based on attention mechanism for 3D semantic segmentation of point clouds
    Zhou, Heng
    Fang, Zhijun
    Gao, Yongbin
    Huang, Bo
    Zhong, Cengsi
    Shang, Ruoxi
    PATTERN RECOGNITION LETTERS, 2020, 133 : 327 - 333
  • [30] EDGE-CONVOLUTION POINT NET FOR SEMANTIC SEGMENTATION OF LARGE-SCALE POINT CLOUDS
    Contreras, Jhonatan
    Denzler, Joachim
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5236 - 5239