Barabasi-Albert random graph with multiple type edges and perturbation

被引:0
|
作者
Backhausz, A. [1 ,2 ]
Rozner, B. [1 ]
机构
[1] Eotvos Lorand Univ, Fac Sci, Dept Probabil Theory & Stat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
random graph; preferential attachment; perturbation; asymptotic; degree distribution;
D O I
10.1007/s10474-019-01005-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the perturbed version of the Barabasi-Albert random graph with multiple type edges and prove the existence of the (generalized) asymptotic degree distribution. Similarly to the non-perturbed case, the asymptotic degree distribution depends on the almost sure limit of the proportion of edges of different types. However, if there is perturbation, then the resulting degree distribution will be deterministic, which is a major difference compared to the non-perturbed case.
引用
收藏
页码:212 / 229
页数:18
相关论文
共 50 条
  • [31] The Bass Diffusion Model on Finite Barabasi-Albert Networks
    Bertotti, M. L.
    Modanese, G.
    COMPLEXITY, 2019, 2019
  • [32] Ising model on two connected Barabasi-Albert networks
    Suchecki, Krzysztof
    Holyst, Janusz A.
    PHYSICAL REVIEW E, 2006, 74 (01):
  • [33] Iterative decomposition of Barabasi-Albert scale-free networks
    Jacome, S. S. B.
    da Silva, L. R.
    Moreira, A. A.
    Andrade, J. S., Jr.
    Herrmann, H. J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (17) : 3674 - 3677
  • [34] Phase diagram of a continuous opinion dynamics on Barabasi-Albert networks
    Alves, T. F. A.
    Alves, G. A.
    Lima, F. W. S.
    Macedo-Filho, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (03):
  • [35] Evolution of egoism on semi-directed and undirected Barabasi-Albert networks
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (12):
  • [36] Ising model spin S=1 on directed Barabasi-Albert networks
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (09): : 1267 - 1272
  • [37] Monte Carlo simulation of Ising model on directed Barabasi-Albert network
    Sumour, MA
    Shabat, MM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (04): : 585 - 589
  • [38] Parameter specification for the degree distribution of simulated Barabasi-Albert graphs
    Mohd-Zaid, Fairul
    Kabban, Christine M. Schubert
    Deckro, Richard F.
    White, Edward D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 : 141 - 152
  • [39] Finite-size effects in Barabasi-Albert growing networks
    Waclaw, B.
    Sokolov, I. M.
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [40] Geometric Nodal Degree Distributions Arise in Barabasi-Albert Graphs!
    Pal, Siddharth
    Swami, Ananthram
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (03): : 1409 - 1421