Barabasi-Albert random graph with multiple type edges and perturbation

被引:0
|
作者
Backhausz, A. [1 ,2 ]
Rozner, B. [1 ]
机构
[1] Eotvos Lorand Univ, Fac Sci, Dept Probabil Theory & Stat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
random graph; preferential attachment; perturbation; asymptotic; degree distribution;
D O I
10.1007/s10474-019-01005-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the perturbed version of the Barabasi-Albert random graph with multiple type edges and prove the existence of the (generalized) asymptotic degree distribution. Similarly to the non-perturbed case, the asymptotic degree distribution depends on the almost sure limit of the proportion of edges of different types. However, if there is perturbation, then the resulting degree distribution will be deterministic, which is a major difference compared to the non-perturbed case.
引用
收藏
页码:212 / 229
页数:18
相关论文
共 50 条
  • [1] On the number of subgraphs of the Barabasi-Albert random graph
    Ryabchenko, A. A.
    Samosvat, E. A.
    IZVESTIYA MATHEMATICS, 2012, 76 (03) : 607 - 625
  • [2] On the number of subgraphs of a random graph in the Barabasi-Albert model
    A. A. Ryabchenko
    E. A. Samosvat
    Doklady Mathematics, 2010, 82 : 946 - 949
  • [3] On the Number of Subgraphs of a Random Graph in the Barabasi-Albert Model
    Ryabchenko, A. A.
    Samosvat, E. A.
    DOKLADY MATHEMATICS, 2010, 82 (03) : 946 - 949
  • [4] On the continuous-time limit of the Barabasi-Albert random graph
    Pachon, Angelica
    Polito, Federico
    Sacerdote, Laura
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [5] Barabási–Albert random graph with multiple type edges and perturbation
    Á. Backhausz
    B. Rozner
    Acta Mathematica Hungarica, 2020, 161 : 212 - 229
  • [6] A generalization of the Barabasi-Albert random tree
    Fazekas, Istvan
    Pecsora, Sandor
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 44 : 71 - 85
  • [7] The maximum degree of the Barabasi-Albert random tree
    Móri, TF
    COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (03): : 339 - 348
  • [8] A surprising property of the Barabasi-Albert random tree
    Mori, Tamas F.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2006, 43 (02) : 265 - 273
  • [9] Structural properties of the scale-free Barabasi-Albert graph
    Zadorozhnyi, V. N.
    Yudin, E. B.
    AUTOMATION AND REMOTE CONTROL, 2012, 73 (04) : 702 - 716
  • [10] Structural properties of the scale-free Barabasi-Albert graph
    V. N. Zadorozhnyi
    E. B. Yudin
    Automation and Remote Control, 2012, 73 : 702 - 716