On Convergence of the Partially Randomized Extended Kaczmarz Method

被引:5
|
作者
Wu, Wen-Ting [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, MIIT Key Lab Math Theory & Computat Informat Secu, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
System of linear equations; Kaczmarz method; randomized iteration; convergence property; BLOCK KACZMARZ; PROJECTION; RATES;
D O I
10.4208/eajam.290921.240122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To complete the convergence theory of the partially randomized extended Kaczmarz method for solving the large inconsistent system of linear equations, we give its convergence theorem whether the coefficient matrix is of full rank or not, tall or flat. This convergence theorem also modifies the existing upper bound for the expected solution error of the partially randomized extended Kaczmarz method when the coefficient matrix is tall and of full column rank. Numerical experiments show that the partially randomized extended Kaczmarz method is convergent when the tall or flat coefficient matrix is rank deficient, and can also converge faster than the randomized extended Kaczmarz method.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [1] A modified partially randomized extended Kaczmarz iteration method
    Chen, Fang
    Mao, Jin-Feng
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [2] On convergence rate of the randomized Kaczmarz method
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 252 - 269
  • [3] Preasymptotic convergence of randomized Kaczmarz method
    Jiao, Yuling
    Jin, Bangti
    Lu, Xiliang
    INVERSE PROBLEMS, 2017, 33 (12)
  • [4] Linear convergence of the randomized sparse Kaczmarz method
    Schoepfer, Frank
    Lorenz, Dirk A.
    MATHEMATICAL PROGRAMMING, 2019, 173 (1-2) : 509 - 536
  • [5] Linear convergence of the randomized sparse Kaczmarz method
    Frank Schöpfer
    Dirk A. Lorenz
    Mathematical Programming, 2019, 173 : 509 - 536
  • [6] A Note On Convergence Rate of Randomized Kaczmarz Method
    Ying-Jun Guan
    Wei-Guo Li
    Li-Li Xing
    Tian-Tian Qiao
    Calcolo, 2020, 57
  • [7] A Note On Convergence Rate of Randomized Kaczmarz Method
    Guan, Ying-Jun
    Li, Wei-Guo
    Xing, Li-Li
    Qiao, Tian-Tian
    CALCOLO, 2020, 57 (03)
  • [8] On greedy partially randomized extended Kaczmarz method for solving large sparse inconsistent linear systems
    Chen, Fang
    Mao, Jin-Feng
    NUMERICAL ALGORITHMS, 2024,
  • [9] On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 225 - 250
  • [10] Modified partially randomized extended Kaczmarz method with residual for solving large sparse linear systems
    Gao, Chen-Xiao
    Chen, Fang
    APPLIED NUMERICAL MATHEMATICS, 2025, 212 : 215 - 222