Local nearrings with dihedral multiplicative group

被引:20
|
作者
Amberg, B [1 ]
Hubert, P
Sysak, Y
机构
[1] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
local nearring; dihedral group; factorized group;
D O I
10.1016/j.jalgebra.2003.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A not necessarily zero-symmetric nearring R with a unit element is called local if the set of all non-invertible elements of R forms a subgroup of the additive group of R. It is proved that every local nearring whose multiplicative group is dihedral is finite and its additive group is either a 3-group of order at most 9 or a 2-group of order at most 32. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:700 / 717
页数:18
相关论文
共 50 条
  • [22] Automorphism groups emitting local endomorphism nearrings II
    Peterson, GL
    Nearring and Nearfields, 2005, : 263 - 276
  • [23] Codes in a Dihedral Group Algebra
    K. V. Vedenev
    V. M. Deundyak
    Automatic Control and Computer Sciences, 2019, 53 : 745 - 754
  • [24] Spectral theory for the dihedral group
    Helffer, B
    Hoffmann-Ostenhof, M
    Hoffmann-Ostenhof, T
    Nadirashvili, N
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (05) : 989 - 1017
  • [25] On local near-rings with Miller-Moreno multiplicative group
    Raevs'ka, M. Yu.
    Sysak, Ya. P.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 64 (06) : 930 - 937
  • [26] On exact products of a cyclic group and a dihedral group
    Hu, Kan
    Kovacs, Istvan
    Kwon, Young Soo
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (02) : 854 - 874
  • [27] CONCEPTS OF THE DIHEDRAL INFINITE GROUP
    BERMAN, SD
    BUZASHI, K
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1981, 28 (1-2): : 173 - 187
  • [28] Spectral theory for the dihedral group
    B. Helffer
    M. Hoffmann-Ostenhof
    T. Hoffmann-Ostenhof
    N. Nadirashvili
    Geometric & Functional Analysis GAFA, 2002, 12 : 989 - 1017
  • [29] Codes in a Dihedral Group Algebra
    Vedenev, K. V.
    Deundyak, V. M.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2019, 53 (07) : 745 - 754
  • [30] Complex bordism of the dihedral group
    Yagita, N
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1996, 48 (02) : 195 - 204