Bayesian Nonparametric Longitudinal Data Analysis

被引:26
|
作者
Quintana, Fernando A. [1 ]
Johnson, Wesley O. [2 ]
Waetjen, L. Elaine [3 ,4 ]
Gold, Ellen B. [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estad, Santiago, Chile
[2] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[3] Univ Calif Davis, Dept Obstet & Gynecol, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Publ Hlth Sci, Div Epidemiol, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Bayesian nonparametric; Covariance estimation; Dirichlet process mixture; Gaussian process; Mixed model; Ornstein-Uhlenbeck process; Study of Women Across the Nation (SWAN); LINEAR MIXED MODELS; COVARIANCE-MATRIX; MIXTURE; DISTRIBUTIONS; POPULATION; INFERENCE; PRIORS;
D O I
10.1080/01621459.2015.1076725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet process mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
引用
收藏
页码:1168 / 1181
页数:14
相关论文
共 50 条
  • [41] Bayesian analysis of longitudinal data via empirical likelihood
    Ouyang, Jiangrong
    Bondell, Howard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [42] Bayesian nonparametric clustering for large data sets
    Daiane Aparecida Zuanetti
    Peter Müller
    Yitan Zhu
    Shengjie Yang
    Yuan Ji
    Statistics and Computing, 2019, 29 : 203 - 215
  • [43] NONPARAMETRIC BAYESIAN SUPERVISED CLASSIFICATION OF FUNCTIONAL DATA
    Rabaoui, Asma
    Kadri, Hachem
    Davy, Manuel
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3381 - 3384
  • [44] Robustifying Bayesian Nonparametric Mixtures for Count Data
    Canale, Antonio
    Prunster, Igor
    BIOMETRICS, 2017, 73 (01) : 174 - 184
  • [45] Nonparametric Bayesian modeling for multivariate ordinal data
    Kottas, A
    Müller, P
    Quintana, F
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (03) : 610 - 625
  • [46] Bayesian nonparametric for causal inference and missing data
    Chen, Li-Pang
    BIOMETRICS, 2024, 80 (01)
  • [47] BAYESIAN NONPARAMETRIC ESTIMATION BASED ON CENSORED DATA
    FERGUSON, TS
    PHADIA, EG
    ANNALS OF STATISTICS, 1979, 7 (01): : 163 - 186
  • [48] A Bayesian nonparametric model for upper record data
    Seo, Jung-In
    Song, Joon Jin
    APPLIED MATHEMATICAL MODELLING, 2019, 71 : 363 - 374
  • [49] Bayesian nonparametric clustering for large data sets
    Zuanetti, Daiane Aparecida
    Mueller, Peter
    Zhu, Yitan
    Yang, Shengjie
    Ji, Yuan
    STATISTICS AND COMPUTING, 2019, 29 (02) : 203 - 215
  • [50] BAYESIAN NONPARAMETRIC SURVIVAL ANALYSIS - COMMENT
    GENEST, C
    KALBFLEISCH, J
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) : 780 - 780