Mutations of puzzles and equivariant cohomology of two-step flag varieties

被引:16
|
作者
Buch, Anders Skovsted [1 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
LITTLEWOOD-RICHARDSON RULE; QUANTUM COHOMOLOGY; HOMOGENEOUS SPACES; POSITIVITY; RING;
D O I
10.4007/annals.2015.182.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a mutation algorithm for puzzles that is a three-direction analogue of the classical jeu de taquin algorithm for semistandard tableaux. We apply this algorithm to prove our conjectured puzzle formula for the equivariant Schubert structure constants of two-step flag varieties. This formula gives an expression for the structure constants that is positive in the sense of Graham. Thanks to the equivariant version of the 'quantum equals classical' result, our formula specializes to a Littlewood-Richardson rule for the equivariant quantum cohomology of Grassmanniaus.
引用
收藏
页码:173 / 220
页数:48
相关论文
共 50 条