HYPERSPECTRAL UNMIXING VIA WAVELET BASED AUTOENCODER NETWORK

被引:4
|
作者
Yan, Bin [1 ]
Wu, Zebin [1 ]
Liu, Hongyi [1 ]
Xu, Yang [1 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hyperspectral unmixing; sparse autoencoder; wavelet domain; ALGORITHM;
D O I
10.1109/whispers.2019.8920935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral unmixing is a hot topic in the field of remote sensing. Due to the limitation of spatial resolution and diversity of object distribution, hyperspectral image contains mixed pixels, which brings a great challenge for hyperspectral image processing. A novel wavelet based hyperspectral unmixing autoencoder network is proposed in this paper. In the framework of autoencoder network, multiscale wavelet coefficients of the signal are employed, which contribute to learn the intrinsic feature of endmember deeply. Moreover, the cost function of the network is designed according to the sparsity and nonnegative constraints of abundance, as well as the spectral fidelity. Experimental results on both simulated and real hyperspectral data sets demonstrate that the proposed method outperforms other state-of-the-art unmixing methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Deep Denoising Autoencoder Networks for Hyperspectral Unmixing
    Wen, Keyao
    Kong, Fanqiang
    Hu, Kedi
    Zhao, Shunmin
    Lecture Notes in Electrical Engineering, 2021, 654 LNEE : 447 - 452
  • [32] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549
  • [33] Hyperspectral unmixing using deep convolutional autoencoder
    Elkholy, Menna M.
    Mostafa, Marwa
    Ebied, Hala M.
    Tolba, Mohamed F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4797 - 4817
  • [34] Adversarially Regularized Autoencoder for Hyperspectral Image Unmixing
    Holland, Wesley J.
    Du, Qian
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
  • [35] Model-Based Deep Autoencoder Networks for Nonlinear Hyperspectral Unmixing
    Li, Haoqing
    Borsoi, Ricardo A.
    Imbiriba, Tales
    Closas, Pau
    Bermudez, Jose C. M.
    Erdogmus, Deniz
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising
    Paul, Arati
    Kundu, Ahana
    Chaki, Nabendu
    Dutta, Dibyendu
    Jha, C. S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (02) : 2529 - 2555
  • [37] Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising
    Arati Paul
    Ahana Kundu
    Nabendu Chaki
    Dibyendu Dutta
    C. S. Jha
    Multimedia Tools and Applications, 2022, 81 : 2529 - 2555
  • [38] HYPERSPECTRAL NONLINEAR UNMIXING VIA GENERATIVE ADVERSARIAL NETWORK
    Tang, Maofeng
    Qu, Ying
    Qi, Hairong
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2404 - 2407
  • [39] Stationary Wavelet Convolutional Network With Generative Feature Learning for Hyperspectral Unmixing
    Xu, Mingming
    Xu, Jin
    Liu, Shanwei
    Sheng, Hui
    Shen, Biaoqun
    Hou, Ke
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [40] AN ADMM BASED NETWORK FOR HYPERSPECTRAL UNMIXING TASKS
    Zhou, Chao
    Rodrigues, Miguel R. D.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1870 - 1874