HYPERSPECTRAL UNMIXING VIA WAVELET BASED AUTOENCODER NETWORK

被引:4
|
作者
Yan, Bin [1 ]
Wu, Zebin [1 ]
Liu, Hongyi [1 ]
Xu, Yang [1 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hyperspectral unmixing; sparse autoencoder; wavelet domain; ALGORITHM;
D O I
10.1109/whispers.2019.8920935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral unmixing is a hot topic in the field of remote sensing. Due to the limitation of spatial resolution and diversity of object distribution, hyperspectral image contains mixed pixels, which brings a great challenge for hyperspectral image processing. A novel wavelet based hyperspectral unmixing autoencoder network is proposed in this paper. In the framework of autoencoder network, multiscale wavelet coefficients of the signal are employed, which contribute to learn the intrinsic feature of endmember deeply. Moreover, the cost function of the network is designed according to the sparsity and nonnegative constraints of abundance, as well as the spectral fidelity. Experimental results on both simulated and real hyperspectral data sets demonstrate that the proposed method outperforms other state-of-the-art unmixing methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Hyperspectral Unmixing with AutoEncoder Network in Wavelet Domain
    Zhan, Chenyang
    Liu, Hongyi
    Zhang, Jun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3259 - 3262
  • [2] Hyperspectral unmixing based on adversarial autoencoder network
    Jin Q.
    Ma Y.
    Fan F.
    Huang J.
    Li H.
    Mei X.
    National Remote Sensing Bulletin, 2023, 27 (08): : 1964 - 1974
  • [3] Adversarial Autoencoder Network for Hyperspectral Unmixing
    Jin, Qiwen
    Ma, Yong
    Fan, Fan
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4555 - 4569
  • [4] Hyperspectral Unmixing Using a Neural Network Autoencoder
    Palsson, Burkni
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE ACCESS, 2018, 6 : 25646 - 25656
  • [5] A cascaded autoencoder unmixing network for Hyperspectral anomaly detection
    Li, Kun
    Wang, Yingqian
    Ling, Qiang
    Cai, Yaoming
    Qin, Yao
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [6] Autoencoder Network for Hyperspectral Unmixing With Adaptive Abundance Smoothing
    Hua, Ziqiang
    Li, Xiaorun
    Qiu, Qunhui
    Zhao, Liaoying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1640 - 1644
  • [7] Residual Dense Autoencoder Network for Nonlinear Hyperspectral Unmixing
    Yang, Xu
    Chen, Jianguo
    Wang, Chengbin
    Chen, Zihao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5580 - 5595
  • [8] LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing
    Zhao, Min
    Yan, Longbin
    Chen, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (02) : 295 - 309
  • [9] A SPECTRAL-SPATIAL ATTENTION AUTOENCODER NETWORK FOR HYPERSPECTRAL UNMIXING
    Wang, Jie
    Xu, Jindong
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7519 - 7522
  • [10] Minimum distance constrained sparse autoencoder network for hyperspectral unmixing
    Zhao, Zhengang
    Hu, Dan
    Wang, Hao
    Yu, Xianchuan
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)