High performance polyurethane-polyacrylic acid polymer binders for silicon microparticle anodes in lithium-ion batteries

被引:14
|
作者
Niu, Sulin [1 ]
Zhao, Min [2 ]
Ma, Lei [1 ]
Zhao, Fangfang [1 ]
Zhang, Yu [1 ]
Tang, Gen [2 ]
Wang, Yue [2 ]
Pang, Aimin [2 ]
Li, Wei [2 ]
Wei, Liangming [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Microelect & Nanosci, Key Lab Thin Film & Microfabricat Technol,Minist, Dong Chuan Rd 800, Shanghai 200240, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Xiangyang 441003, Hubei, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2022年 / 6卷 / 05期
基金
中国国家自然科学基金;
关键词
SI ELECTRODES; CHITOSAN; STORAGE; DESIGN;
D O I
10.1039/d1se01820e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a potential anode material for lithium-ion batteries (LIBs), silicon (Si) has been widely studied because of its high capacity, appropriate potential and abundant sources. However, due to the huge volume changes of the silicon anodes during cycling, the capacity decays rapidly after a few cycles. As an important component of LIBs, polymer binders play a big role in alleviating the volume effect of silicon. The new binders developed at present could effectively improve the swelling problem of silicon, stabilize silicon anodes and improve the cycling stability of LIBs. Nevertheless, their synthesis usually involves complicated reactions. Moreover, it is a bigger challenge when a polymeric binder is used to stabilize cheap micro-silicon-particles. Herein, we present a simple process to prepare a three-dimensional polyurethane-polyacrylic acid network binder for silicon anodes by simply mixing readily available polyurethane and polyacrylic acid in water. This binder can effectively stabilize silicon anodes during cycling and improve the cycling stability of the silicon anodes. The capacity retention of the silicon anode is 70.3% after 200 cycles and 60.9% after 500 cycles, with a high specific capacity of 1934 mA h g(-1) after 500 cycles, showing excellent electrochemical properties.
引用
收藏
页码:1301 / 1311
页数:11
相关论文
共 50 条
  • [31] Ion-Conducting Cross-Linked Polyphosphazene Binders for High- Performance Silicon Anodes in Lithium-Ion Batteries
    Hong, Dong Gi
    Jeong, Daun
    Koong, Chan Yeong
    Han, Ye-eun
    Lee, Heewon
    Lee, Jong-Chan
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (04) : 2617 - 2627
  • [32] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [33] Precisely Prelithiated Polyacrylic Acid Binder Improving Electrochemical Performance of Micron-Sized Silicon Anodes for Lithium-Ion Batteries
    Zhu, Run
    Liu, Siyuan
    Li, Tongtao
    Yang, Dong
    CHEMELECTROCHEM, 2024, 11 (15):
  • [34] Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries
    Zeng, Wenwu
    Wang, Lei
    Peng, Xiang
    Liu, Tiefeng
    Jiang, Youyu
    Qin, Fei
    Hu, Lin
    Chu, Paul K.
    Huo, Kaifu
    Zhou, Yinhua
    ADVANCED ENERGY MATERIALS, 2018, 8 (11)
  • [35] Interaction of Boron-Based Cross-Linkers with Polymer Binders for Silicon Anodes in Lithium-Ion Batteries
    Patranika, Tamara
    Marker, Katharina
    Paul, Subhradip
    Naylor, Andrew J.
    Mindemark, Jonas
    Edstrom, Kristina
    Hernandez, Guiomar
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (20): : 12429 - 12440
  • [36] Conductive Polymer Frameworks in Silicon Anodes for Advanced Lithium-Ion Batteries
    Balqis, Falihah
    Eldona, Calvin
    Laksono, Basuki Tri
    Aini, Quratul
    Hamid, Faiq Haidar
    Wasisto, Hutomo Suryo
    Sumboja, Afriyanti
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (07) : 4933 - 4952
  • [37] Research progress of functional binders for silicon-based anodes in lithium-ion batteries
    Zhou, Jianhua
    Chen, Xiaoyu
    Luo, Zongwu
    Jingxi Huagong/Fine Chemicals, 2022, 39 (07): : 1330 - 1338
  • [38] Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries
    Tao Li
    Juan-yu Yang
    Shi-gang Lu
    International Journal of Minerals, Metallurgy, and Materials, 2012, 19 : 752 - 756
  • [39] Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries
    Yu, Yuanyuan
    Zhu, Jiadeng
    Zeng, Ke
    Jiang, Mengjin
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (06) : 3472 - 3481
  • [40] Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries
    Li, Tao
    Yang, Juan-yu
    Lu, Shi-gang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2012, 19 (08) : 752 - 756