The p-norm of circulant matrices via Fourier analysis

被引:1
|
作者
Sahasranand, K. R. [1 ]
机构
[1] Indian Inst Sci, Dept Elect Commun Engn, Bengaluru 560012, India
来源
CONCRETE OPERATORS | 2021年 / 9卷 / 01期
关键词
self-adjoint; unitary invariance; induced norm; Riesz-Thorin interpolation;
D O I
10.1515/conop-2021-0123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent work derived expressions for the induced p-norm of a special class of circulant matrices A(n, a, b) is an element of R-nxn with the diagonal entries equal to a is an element of N and the off-diagonal entries equal to b >= 0. We provide shorter proofs for all the results therein using Fourier analysis. The key observation is that a circulant matrix is diagonalized by a DFT matrix. The results comprise an exact expression for parallel to A parallel to(p), 1 <= p <= infinity , where A = A(n, a, b), a >= 0 and for parallel to A parallel to(2) where A = A(n, -a, b), a >= 0; for the other p-norms of A(n, -a, b), 2 < p < infinity, upper and lower bounds are derived.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] ESTIMATING THE MATRIX P-NORM
    HIGHAM, NJ
    NUMERISCHE MATHEMATIK, 1992, 62 (04) : 539 - 555
  • [22] Faster p-norm minimizing flows, via smoothed q-norm problems
    Adil, Deeksha
    Sachdeva, Sushant
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 892 - 910
  • [23] MONTE CARLO ESTIMATORS FOR THE SCHATTEN p-NORM OF SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    DUDLEY, E. T. H. A. N.
    SAIBABA, A. R. V. I. N. D. K.
    ALEXANDERIAN, A. L. E. N.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 213 - 241
  • [24] The Robustness of the p-Norm Algorithms
    Claudio Gentile
    Machine Learning, 2003, 53 : 265 - 299
  • [25] Schatten p-norm based principal component analysis
    Chang, Heyou
    Luo, Lei
    Yang, Jian
    Yang, Meng
    NEUROCOMPUTING, 2016, 207 : 754 - 762
  • [26] Faster p-norm minimizing flows, via smoothed q-norm problems
    Adil, Deeksha
    Sachdeva, Sushant
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 892 - 910
  • [27] Spectral Norm of Circulant-Type Matrices
    Arup Bose
    Rajat Subhra Hazra
    Koushik Saha
    Journal of Theoretical Probability, 2011, 24 : 479 - 516
  • [28] Spectral Norm of Circulant-Type Matrices
    Bose, Arup
    Hazra, Rajat Subhra
    Saha, Koushik
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) : 479 - 516
  • [29] Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra
    ZhaoLin Jiang
    TingTing Xu
    Science China Mathematics, 2016, 59 : 351 - 366
  • [30] Norm estimates of ω-circulant operator matrices and isomorphic operators for ω-circulant algebra
    Jiang ZhaoLin
    Xu TingTing
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (02) : 351 - 366