Linear spring stiffnesses for two-dimensional finite element modeling of arteries

被引:1
|
作者
Baier-Saip, J. A. [1 ]
Baier, P. A. [2 ]
Oliveira, J. C. [3 ]
Baier, H. [4 ]
机构
[1] Univ Catolica Maule, Fac Ciencias Basicas, Av San Miguel 3605,Casilla 617, Talca, Chile
[2] Inst Fed Educ Ciencia & Tecnol Ceara, Rua Estevao Remigio 1145, Limoeiro Do Norte, CE, Brazil
[3] Lab Nacl Comp Cient, Av Getulio Vargas 333, Petropolis, RJ, Brazil
[4] Univ Wurzburg, D-97074 Wurzburg, Germany
关键词
Elasticity tensor; Normal and angular springs; Stiffnesses; INVASIVE VASCULAR INTERVENTIONS; MECHANICAL-PROPERTIES; BLOOD-VESSELS; SIMULATOR; ELASTICITY; FRAMEWORK; BEHAVIOR; TISSUES;
D O I
10.1016/j.euromechsol.2018.04.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The physical properties of arteries are important in the research of the circulatory system dynamics. Moreover, in order to build Virtual Reality Simulators, it is crucial to have a tissue model able to respond in real time. A reduced mesh size results in shorter processing times, which can be achieved using a two-dimensional grid. In this work, a triangular topology is considered and the nodes are connected by three kinds of linear springs (one normal and two angular ones). The spring stiffnesses depend on the mesh geometry and on the elastic properties of the artery. The model linearizes the material response, but it still contemplates the geometric nonlinearities. Comparisons showed a good match with a nonlinear model and with our previous model based on a quadrilateral topology. However, the proposed model extension is more flexible and easier to implement than the previous one.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 50 条
  • [41] Two-dimensional finite element analysis of turning processes
    Borsos B.
    Csörgo A.
    Hidas A.
    Kotnyek B.
    Szabó A.
    Kossa A.
    Stépán G.
    [J]. Kotnyek, Bálint (kotnyek.balint@gmail.com), 1600, Budapest University of Technology and Economics (61): : 44 - 54
  • [42] A two-dimensional damaged finite element for fracture applications
    Potirniche, G. P.
    Hearndon, J.
    Daniewicz, S. R.
    Parker, D.
    Cuevas, P.
    Wang, P. T.
    Horstemeyer, M. F.
    [J]. ENGINEERING FRACTURE MECHANICS, 2008, 75 (13) : 3895 - 3908
  • [43] FINITE-ELEMENT TECHNIQUE FOR TWO-DIMENSIONAL CONSOLIDATION
    GRAY, DG
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS PART 2-RESEARCH AND THEORY, 1980, 69 (JUN): : 535 - 542
  • [44] Two-dimensional finite element modelling of the neonatal head
    Gibson, A
    Bayford, RH
    Holder, DS
    [J]. PHYSIOLOGICAL MEASUREMENT, 2000, 21 (01) : 45 - 52
  • [45] A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics
    Song, Chongmin
    Ooi, Ean Tat
    Natarajan, Sundararajan
    [J]. ENGINEERING FRACTURE MECHANICS, 2018, 187 : 45 - 73
  • [46] Dynamic analysis method of two-dimensional linear oscillatory actuator employing finite element method
    Hirata, Katsuhiro
    Yamamoto, Tadashi
    Yamaguchi, Tadashi
    Kawase, Yoshihiro
    Hasegawa, Yuya
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1441 - 1444
  • [47] A finite element formulation for global linear stability analysis of a nominally two-dimensional base flow
    Mittal, Sanjay
    Sidharth, G. S.
    Verma, Abhishek
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (04) : 295 - 312
  • [49] AN ACCURATE SCALAR POTENTIAL FINITE-ELEMENT METHOD FOR LINEAR, TWO-DIMENSIONAL MAGNETOSTATICS PROBLEMS
    MCDANIEL, TW
    FERNANDEZ, RB
    ROOT, RR
    ANDERSON, RB
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (05) : 725 - 737
  • [50] Impact on granular bed: validation of discrete element modeling results by means of two-dimensional finite element analysis
    Marzulli, Valentina
    Cisneros, Luis Armando Torres
    di Lernia, Annamaria
    Windows-Yule, Christopher Robert Kit
    Cafaro, Francesco
    Poeschel, Thorsten
    [J]. GRANULAR MATTER, 2020, 22 (01)