A good characterization of squares of strongly chordal split graphs

被引:16
|
作者
Van Bang Le [1 ]
Ngoc Tuy Nguyen [2 ]
机构
[1] Univ Rostock, Inst Informat, D-18051 Rostock, Germany
[2] Hong Duc Univ, Fac Informat Technol, Thanh Hoa, Vietnam
关键词
Graph powers; Squares of split graphs; Good characterizations; Graph algorithms; POWERS;
D O I
10.1016/j.ipl.2010.11.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The square H(2) of a graph H is obtained from H by adding new edges between every two vertices having distance two in H. Lau and Cornell [Recognizing powers of proper interval, split and chordal graphs, SIAM J. Discrete Math. 18 (2004) 83-102] proved that recognizing squares of split graphs is an NP-complete problem. In contrast, we show that squares of strongly chordal split graphs can be recognized in quadratic-time by giving a structural characterization of these graph class. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 123
页数:4
相关论文
共 50 条
  • [11] Strongly chordal and chordal bipartite graphs are sandwich monotone
    Heggernes, Pinar
    Mancini, Federico
    Papadopoulos, Charis
    Sritharan, R.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (03) : 438 - 456
  • [12] Matching and multidimensional matching in chordal and strongly chordal graphs
    Dahlhaus, E
    Karpinski, M
    [J]. DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) : 79 - 91
  • [13] Strongly chordal and chordal bipartite graphs are sandwich monotone
    Pinar Heggernes
    Federico Mancini
    Charis Papadopoulos
    R. Sritharan
    [J]. Journal of Combinatorial Optimization, 2011, 22 : 438 - 456
  • [14] Strongly Chordal and Chordal Bipartite Graphs Are Sandwich Monotone
    Heggernes, Pinar
    Mancini, Federico
    Papadopoulos, Charis
    Sritharan, R.
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2009, 5609 : 398 - +
  • [15] Chordal bipartite, strongly chordal, and strongly chordal bipartite graphs (vol 260, pg 231, 2003)
    McKee, TA
    [J]. DISCRETE MATHEMATICS, 2003, 272 (2-3) : 307 - +
  • [16] Roman domination on strongly chordal graphs
    Chun-Hung Liu
    Gerard J. Chang
    [J]. Journal of Combinatorial Optimization, 2013, 26 : 608 - 619
  • [17] On Strongly Chordal Graphs That Are Not Leaf Powers
    Lafond, Manuel
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 386 - 398
  • [18] Odd twists on strongly chordal graphs
    McKee, Terry A.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (03)
  • [19] Roman domination on strongly chordal graphs
    Liu, Chun-Hung
    Chang, Gerard J.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (03) : 608 - 619
  • [20] ALMOST ALL CHORDAL GRAPHS SPLIT
    BENDER, EA
    RICHMOND, LB
    WORMALD, NC
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1985, 38 (APR): : 214 - 221