Scalable Large Margin Gaussian Process Classification

被引:2
|
作者
Wistuba, Martin [1 ]
Rawat, Ambrish [1 ]
机构
[1] IBM Res, Dublin, Ireland
关键词
SUPPORT VECTOR MACHINES; INFERENCE;
D O I
10.1007/978-3-030-46147-8_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new Large Margin Gaussian Process (LMGP) model by formulating a pseudo-likelihood for a generalised multi-class hinge loss. We derive a highly scalable training objective for the proposed model using variational-inference and inducing point approximation. Additionally, we consider the joint learning of LMGP-DNN which combines the proposed model with traditional Deep Learning methods to enable learning for unstructured data. We demonstrate the effectiveness of the Large Margin GP with respect to both training time and accuracy in an extensive classification experiment consisting of 68 structured and two unstructured data sets. Finally, we highlight the key capability and usefulness of our model in yielding prediction uncertainty for classification by demonstrating its effectiveness in the tasks of large-scale active learning and detection of adversarial images.
引用
收藏
页码:501 / 516
页数:16
相关论文
共 50 条
  • [21] Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
    Wenger, Jonathan
    Pleiss, Geoff
    Hennig, Philipp
    Cunningham, John P.
    Gardner, Jacob R.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [22] Gaussian process classification bandits
    Hayashi, Tatsuya
    Ito, Naoki
    Tabata, Koji
    Nakamura, Atsuyoshi
    Fujita, Katsumasa
    Harada, Yoshinori
    Komatsuzaki, Tamiki
    [J]. PATTERN RECOGNITION, 2024, 149
  • [23] Large margin classification for moving targets
    Kivinen, J
    Smola, AJ
    Williamson, RC
    [J]. ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2002, 2533 : 113 - 127
  • [24] An evolutionary algorithm for large margin classification
    Motta Goulart, Renan
    Hasenclever Borges, Carlos Cristiano
    Fonseca Neto, Raul
    [J]. SOFT COMPUTING, 2021, 25 (11) : 7593 - 7607
  • [25] SCALABLE HIERARCHICAL MIXTURE OF GAUSSIAN PROCESSES FOR PATTERN CLASSIFICATION
    Nguyen, T. N. A.
    Bouzerdoum, A.
    Phung, S. L.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2466 - 2470
  • [26] Large margin DAGs for multiclass classification
    Platt, JC
    Cristianini, N
    Shawe-Taylor, J
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 547 - 553
  • [27] Large margin classification with indefinite similarities
    Ibrahim Alabdulmohsin
    Moustapha Cisse
    Xin Gao
    Xiangliang Zhang
    [J]. Machine Learning, 2016, 103 : 215 - 237
  • [28] Large Margin Deep Networks for Classification
    Elsayed, Gamaleldin F.
    Krishnan, Dilip
    Mobahi, Hossein
    Regan, Kevin
    Bengio, Samy
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [29] An evolutionary algorithm for large margin classification
    Renan Motta Goulart
    Carlos Cristiano Hasenclever Borges
    Raul Fonseca Neto
    [J]. Soft Computing, 2021, 25 : 7593 - 7607
  • [30] Large margin classification with indefinite similarities
    Alabdulmohsin, Ibrahim
    Cisse, Moustapha
    Gao, Xin
    Zhang, Xiangliang
    [J]. MACHINE LEARNING, 2016, 103 (02) : 215 - 237