Upper bound limit analysis of slope stability using rigid finite elements and nonlinear programming

被引:92
|
作者
Chen, J
Yin, JH [1 ]
Lee, CF
机构
[1] Hong Kong Polytech Univ, Dept Civil & Struct Engn, Kowloon, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Civil Engn, Hong Kong, Hong Kong, Peoples R China
关键词
limit analysis; upper bound; rigid finite element; nonlinear programming; sequential quadratic algorithm; slope stability;
D O I
10.1139/T03-032
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this paper, the development and application of a new upper bound limit method for two- and three-dimensional (2D and 3D) slope stability problems is presented. Rigid finite elements are used to construct a kinematically admissible velocity field. Kinematically admissible velocity discontinuities are permitted to occur at all inter-element boundaries. The proposed method formulates the slope stability problem as an optimization problem based on the upper bound theorem. The objective function for determination of the minimum value of the factor of safety has a number of unknowns that are subject to a set of linear and nonlinear equality constraints as well as linear inequality constraints. The objective function and constrain equations are derived from an energy-work balance equation, the Mohr-Coulomb failure (yield) criterion, an associated flow rule, and a number of boundary conditions. The objective function with constraints leads to a standard nonlinear programming problem, which can be solved by a sequential quadratic algorithm. A computer program has been developed for finding the factor of safety of a slope, which makes the present method simple to implement. Four typical 2D and 3D slope stability problems are selected from the literature and are analysed using the present method. The results of the present limit analysis are compared with those produced by other approaches reported in the literature.
引用
收藏
页码:742 / 752
页数:11
相关论文
共 50 条