Information Fusion-Based Deep Neural Attentive Matrix Factorization Recommendation

被引:7
|
作者
Tian, Zhen [1 ,2 ]
Pan, Lamei [2 ]
Yin, Pu [1 ,2 ]
Wang, Rui [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528300, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
attention mechanism; cross-features; deep neural network; information fusion; matrix factorization; recommendation system;
D O I
10.3390/a14100281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of the recommendation system has effectively alleviated the information overload problem. However, traditional recommendation systems either ignore the rich attribute information of users and items, such as the user's social-demographic features, the item's content features, etc., facing the sparsity problem, or adopt the fully connected network to concatenate the attribute information, ignoring the interaction between the attribute information. In this paper, we propose the information fusion-based deep neural attentive matrix factorization (IFDNAMF) recommendation model, which introduces the attribute information and adopts the element-wise product between the different information domains to learn the cross-features when conducting information fusion. In addition, the attention mechanism is utilized to distinguish the importance of different cross-features on prediction results. In addition, the IFDNAMF adopts the deep neural network to learn the high-order interaction between users and items. Meanwhile, we conduct extensive experiments on two datasets: MovieLens and Book-crossing, and demonstrate the feasibility and effectiveness of the model.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Deep feature fusion-based stacked denoising autoencoder for tag recommendation systems
    Fei, Zhengshun
    Wang, Jinglong
    Liu, Kangling
    Attahi, Eric
    Huang, Bingqiang
    IET CYBER-SYSTEMS AND ROBOTICS, 2023, 5 (03)
  • [12] Deep Matrix Factorization for Learning Resources Recommendation
    Dien, Tran Thanh
    Thanh-Hai, Nguyen
    Nghe, Nguyen Thai
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 167 - 179
  • [13] Neural Factorization Applied to Interaction Matrix for Recommendation
    Sarridis, Ioannis
    Kotropoulos, Constantine
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1336 - 1340
  • [14] Talent recommendation based on attentive deep neural network and implicit relationships of resumes
    Huang, Yang
    Liu, Duen-Ren
    Lee, Shin-Jye
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [15] DeepAPF: Deep Attentive Probabilistic Factorization for Multi-site Video Recommendation
    Yan, Huan
    Chen, Xiangning
    Gao, Chen
    Li, Yong
    Jin, Depeng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1459 - 1465
  • [16] Neural Attentive Session-based Recommendation
    Li, Jing
    Ren, Pengjie
    Chen, Zhumin
    Ren, Zhaochun
    Lian, Tao
    Ma, Jun
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1419 - 1428
  • [17] Kernelized Deep Learning for Matrix Factorization Recommendation System Using Explicit and Implicit Information
    Zheng, Xiaoyao
    Ni, Zhen
    Zhong, Xiangnan
    Luo, Yonglong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 1205 - 1216
  • [18] Probability Matrix Factorization for Link Prediction Based on Information Fusion
    Wang Z.
    Liang J.
    Li R.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (02): : 306 - 318
  • [19] Variational Deep Collaborative Matrix Factorization for Social Recommendation
    Xiao, Teng
    Tian, Hui
    Shen, Hong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 426 - 437
  • [20] BDMF: A Biased Deep Matrix Factorization Model for Recommendation
    Ma, Changsheng
    Li, Jianjun
    Pan, Peng
    Li, Guohui
    Du, Junbo
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 1039 - 1045