Parameterized Complexity of (A, l)-Path Packing

被引:0
|
作者
Belmonte, Remy [1 ,6 ]
Hanaka, Tesshu [2 ]
Kanzaki, Masaaki [3 ]
Kiyomi, Masashi [4 ]
Kobayashi, Yasuaki [5 ]
Kobayashi, Yusuke [5 ]
Lampis, Michael [6 ]
Ono, Hirotaka [2 ]
Otachi, Yota [2 ]
机构
[1] Univ Electrocommun, Chofu, Tokyo, Japan
[2] Nagoya Univ, Nagoya, Aichi, Japan
[3] Japan Adv Inst Sci & Technol, Nomi, Japan
[4] Seikei Univ, Musashino, Tokyo, Japan
[5] Kyoto Univ, Kyoto, Japan
[6] Univ Paris 09, PSL Univ, LAMSADE, CNRS, F-75016 Paris, France
关键词
A-path packing; Fixed-parameter tractability; Treewidth; NONZERO A-PATHS; INTERVAL-GRAPHS; ALGORITHM; PARTITION; MINORS; NUMBER;
D O I
10.1007/s00453-021-00875-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph G = (V, E), A subset of V, and integers k and l, the (A, l)-PATH PACKING problem asks to find k vertex-disjoint paths of length exactly l that have endpoints in A and internal points in V\A. We study the parameterized complexity of this problem with parameters vertical bar A vertical bar, l, k, treewidth, pathwidth, and their combinations. We present sharp complexity contrasts with respect to these parameters. Among other results, we show that the problem is polynomial-time solvable when l <= 3, while it is NP-complete for constant l >= 4. We also show that the problem is W[1]-hard parameterized by pathwidth + vertical bar A vertical bar, while it is fixed-parameter tractable parameterized by treewidth + l. Additionally, we study a variant called SHORT A- PATH PACKING that asks to find k vertex-disjoint paths of length at most l. We show that all our positive results on the exact-length version can be translated to this version and show the hardness of the cases where vertical bar A vertical bar or l is a constant.
引用
收藏
页码:871 / 895
页数:25
相关论文
共 50 条
  • [11] On Counting Parameterized Matching and Packing
    Liu, Yunlong
    Wang, Jianxin
    FRONTIERS IN ALGORITHMICS, FAW 2016, 2016, 9711 : 125 - 134
  • [12] Parameterized complexity of firefighting
    Bazgan, Cristina
    Chopin, Morgan
    Cygan, Marek
    Fellows, Michael R.
    Fomin, Fedor V.
    van Leeuwen, Erik Jan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (07) : 1285 - 1297
  • [13] Parameterized parallel complexity
    Cesati, M
    Di Ianni, M
    EURO-PAR '98 PARALLEL PROCESSING, 1998, 1470 : 892 - 896
  • [14] Descriptive and parameterized complexity
    Grohe, M
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 1999, 1683 : 14 - 31
  • [15] Parameterized Random Complexity
    Andres Montoya, Juan
    Mueller, Moritz
    THEORY OF COMPUTING SYSTEMS, 2013, 52 (02) : 221 - 270
  • [16] Parameterized Complexity of Diameter
    Matthias Bentert
    André Nichterlein
    Algorithmica, 2023, 85 : 325 - 351
  • [17] Parameterized complexity for the skeptic
    Downey, R
    18TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2003, : 147 - 168
  • [18] Parameterized Complexity of Diameter
    Bentert, Matthias
    Nichterlein, Andre
    ALGORITHMICA, 2023, 85 (02) : 325 - 351
  • [19] Parameterized Proof Complexity
    Dantchev, Stefan
    Martin, Barnaby
    Szeider, Stefan
    COMPUTATIONAL COMPLEXITY, 2011, 20 (01) : 51 - 85
  • [20] Parameterized Complexity of Gerrymandering
    Fraser, Andrew
    Lavallee, Brian
    Sullivan, Blair D.
    ALGORITHMIC GAME THEORY, SAGT 2023, 2023, 14238 : 127 - 141