Potential tests of the generalized uncertainty principle in the advanced LIGO experiment

被引:58
|
作者
Bosso, Pasquale [1 ,2 ,3 ,4 ]
Das, Saurya [1 ,2 ]
Mann, Robert B. [5 ,6 ]
机构
[1] Univ Lethbridge, Theoret Phys Grp, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
[2] Univ Lethbridge, Quantum Alberta, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
[3] Bielefeld Univ, Fak Phys, D-33501 Bielefeld, Germany
[4] Univ Guanajuato, Dept Fis, Div Ciencias & Ingn, Campus Leon, Guanajuato 37150, Mexico
[5] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[6] Perimeter Inst, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM-GRAVITY;
D O I
10.1016/j.physletb.2018.08.061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The generalized uncertainty principle and a minimum measurable length arise in various theories of gravity and predict Planck-scale modifications of the canonical position-momentum commutation relation. Postulating a similar modified commutator between the canonical variables of the electromagnetic field in quantum optics, we compute Planck-scale corrections to the radiation pressure noise and shot noise of Michelson-Morley interferometers, with particular attention to gravity wave detectors such as LIGO. We show that advanced LIGO is potentially sensitive enough to observe Planck-scale effects and thereby indirectly a minimal length. We also propose estimates for the bounds on quantum gravity parameters from current and future advanced LIGO experiments. (C) 2018 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:498 / 505
页数:8
相关论文
共 50 条
  • [21] Discussion on Exact Solution of Dirac Equation with Generalized Exponential Potential in the Presence of Generalized Uncertainty Principle
    Zhao, Zi-Long
    Wu, Hao
    Long, Zheng-Wen
    FEW-BODY SYSTEMS, 2021, 62 (03)
  • [22] The minimum masses of black holes from the generalized uncertainty principle and the uncertainty principle
    Meng-Sen Ma
    Fang Liu
    Ren Zhao
    Astrophysics and Space Science, 2014, 349 : 861 - 864
  • [23] Cornell potential in generalized uncertainty principle formalism: the case of Schrödinger equation
    Jahankohan K.
    Zarrinkamar S.
    Hassanabadi H.
    Quantum Studies: Mathematics and Foundations, 2016, 3 (1) : 109 - 114
  • [24] The minimum masses of black holes from the generalized uncertainty principle and the uncertainty principle
    Ma, Meng-Sen
    Liu, Fang
    Zhao, Ren
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 861 - 864
  • [25] SET OF GENERALIZED UNCERTAINTY RELATIONS AND NATURE OF UNCERTAINTY PRINCIPLE
    SILVERT, W
    PHYSICAL REVIEW D, 1970, 2 (04): : 633 - &
  • [26] Entropic uncertainty relation based on generalized uncertainty principle
    Hsu, Li-Yi
    Kawamoto, Shoichi
    Wen, Wen-Yu
    MODERN PHYSICS LETTERS A, 2017, 32 (28)
  • [27] Heisenberg uncertainty principle: an advanced undergraduate laboratory experiment based on quantum quadrature operators
    Chen, Yu
    Liu, Zhaoyang
    Chen, Xin
    Liu, Shuqi
    Jiang, Jiatong
    Wu, Yuan
    Guo, Jinxian
    Chen, L. Q.
    EUROPEAN JOURNAL OF PHYSICS, 2023, 44 (02)
  • [28] GENERALIZED COHERENT STATES AND THE UNCERTAINTY PRINCIPLE
    ROY, SM
    SINGH, V
    PHYSICAL REVIEW D, 1982, 25 (12) : 3413 - 3416
  • [29] Generalized uncertainty principle and neutrino phenomenology
    Gialamas, Ioannis D.
    Karkkainen, Timo J.
    Marzola, Luca
    PHYSICS LETTERS B, 2024, 856
  • [30] Generalized uncertainty principle and corpuscular gravity
    Buoninfante, Luca
    Luciano, Giuseppe Gaetano
    Petruzziello, Luciano
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (08):