Local linear regression in proportional hazards model with censored data

被引:0
|
作者
Zhao, Xiaobing [1 ,2 ]
Zhou, Xian [3 ]
Wu, Xianyi [1 ]
机构
[1] E China Normal Univ, Dept Stat, Shanghai, Peoples R China
[2] So Yangtze Univ, Sch Sci, Jiangsu, Peoples R China
[3] Macquarie Univ, Dept Actuarial Studies, Sydney, NSW, Australia
关键词
censored data; kernel estimator; local linear smoothing; nonparametric regression; transformation models;
D O I
10.1080/03610920701386828
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study the method of nonparametric regression based on a transformation model, under which an unknown transformation of the survival time is nonlinearly, even more, nonparametrically, related to the covariates with various error distributions, which are parametrically specified with unknown parameters. Local linear approximations and locally weighted least squares are applied to obtain estimators for the effects of covariates with censored observations. We show that the estimators are consistent and asymptotically normal. This transformation model, coupled with local linear approximation techniques, provides many alternatives to the more general proportional hazards models with nonparametric covariates.
引用
收藏
页码:2761 / 2776
页数:16
相关论文
共 50 条
  • [41] Interval-Censored Regression with Non-Proportional Hazards with Applications
    Prataviera, Fabio
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Savian, Taciana V.
    Cordeiro, Gauss M.
    [J]. STATS, 2023, 6 (02): : 643 - 656
  • [42] A partially linear proportional hazards model for current status data
    Lu, Minggen
    McMahan, Christopher S.
    [J]. BIOMETRICS, 2018, 74 (04) : 1240 - 1249
  • [43] An extended proportional hazards model for interval-censored data subject to instantaneous failures
    Gamage, Prabhashi W. Withana
    Chaudari, Monica
    McMahan, Christopher S.
    Kim, Edwin H.
    Kosorok, Michael R.
    [J]. LIFETIME DATA ANALYSIS, 2020, 26 (01) : 158 - 182
  • [44] Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data
    Kim, Yongdai
    Kim, Bumsoo
    Jang, Woncheol
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (06) : 1339 - 1351
  • [45] A Gamma-frailty proportional hazards model for bivariate interval-censored data
    Gamage, Prabhashi W. Withana
    McMahan, Christopher S.
    Wang, Lianming
    Tu, Wanzhu
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 354 - 366
  • [46] An extended proportional hazards model for interval-censored data subject to instantaneous failures
    Prabhashi W. Withana Gamage
    Monica Chaudari
    Christopher S. McMahan
    Edwin H. Kim
    Michael R. Kosorok
    [J]. Lifetime Data Analysis, 2020, 26 : 158 - 182
  • [47] Maximum likelihood estimation for the proportional hazards model with partly interval-censored data
    Kim, JS
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 489 - 502
  • [48] Nonparametric local linear regression estimation for censored data and functional regressors
    Sara, Leulmi
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (01) : 25 - 46
  • [49] Nonparametric regression estimates with censored data: Local linear smoothers and their applications
    Department of Biostatistics, Graduate School of Public Health, University Pittsburgh, 130 DeSoto Street, Pittsburgh, PA 15261, United States
    不详
    [J]. Biometrics, 4 (1434-1444):
  • [50] Nonparametric regression estimates with censored data: Local linear smoothers and their applications
    Kim, HT
    Truong, YK
    [J]. BIOMETRICS, 1998, 54 (04) : 1434 - 1444