Performance Analysis of Vehicle Classification System using Type-1 Fuzzy, Adaptive Neuro-Fuzzy and Type-2 Fuzzy Inference System

被引:0
|
作者
Sharma, Prashant [1 ]
Bajaj, Preeti [1 ]
机构
[1] GH Raisoni Coll Engn, Nagpur, Maharashtra, India
关键词
Type-1 fuzzy logic; ANFIS (adaptive neuro-fuzzy inference system); Type-2 Fuzzy logic;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Vehicle Class is an important parameter in road traffic measurement. In this paper authors developed an algorithm to find the accuracy of the system for vehicle classification using different techniques. The algorithm mainly reads the inference system and applies various input samples, check the class of each sample and calculate the accuracy. Initially the classification was done using Type-1 fuzzy logic system and found that the accuracy of the system was not acceptable. To increase the accuracy there was a need to meticulously adjust the shape and placement of membership function of different input variables. This process was time consuming and inaccurate. Then the same objective was implemented using adaptive neuro-fuzzy inference system and it was observed that the membership functions are finely tuned by antis and accuracy was greatly increased. Finally, type-2 fuzzy inference system is used for the same purpose and it is expected that it may further improve the results as imperfection and uncertainty in the vehicle data are very nicely handled by type-2 fuzzy system.
引用
收藏
页码:570 / 573
页数:4
相关论文
共 50 条
  • [41] Overshoot Reduction Using Adaptive Neuro-Fuzzy Inference System for an Autonomous Underwater Vehicle
    Nayak, Narayan
    Das, Soumya Ranjan
    Panigrahi, Tapas Kumar
    Das, Himansu
    Nayak, Soumya Ranjan
    Singh, Krishna Kant
    Askar, S. S.
    Abouhawwash, Mohamed
    MATHEMATICS, 2023, 11 (08)
  • [42] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [43] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM FOR END MILLING
    Markopoulos, Angelos P.
    Georgiopoulos, Sotirios
    Kinigalakis, Myron
    Manolakos, Dimitrios E.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2016, 11 (09) : 1234 - 1248
  • [44] Adaptive Neuro-Fuzzy Inference System for Financial Evaluation
    Orhei, Dragomir
    VISION 2020: SUSTAINABLE GROWTH, ECONOMIC DEVELOPMENT, AND GLOBAL COMPETITIVENESS, VOLS 1-5, 2014, : 241 - 245
  • [45] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [46] Classification of vehicles using adaptive neuro fuzzy inference system
    Shah, Mrugesh. L.
    Mehta, Prarthan D.
    2014 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS), 2014,
  • [47] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [48] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [49] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [50] AN ANALYSIS OF CHILLER ENERGY SAVINGS USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Chan, Tien-Shun
    Chang, Yung-Chung
    Lu, Jyun-Ting
    ENERGY AND MECHANICAL ENGINEERING, 2016, : 344 - 357