POSITIVE SOLUTION CURVES OF AN INFINITE SEMIPOSITONE PROBLEM

被引:0
|
作者
Dhanya, Rajendran [1 ]
机构
[1] Indian Inst Technol, Sch Math & Comp Sci, Veling 403401, Goa, India
关键词
Semipositone problems; topological methods; bifurcation theory; FREE-BOUNDARY SOLUTIONS; BIFURCATION; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the infinite semipositone problem -Delta u= lambda f(u) in Omega, a smooth bounded domain in R-N, and u = 0 on partial derivative Omega, where f(t) = t(q) - t(-beta) and 0 < q, beta< 1. Using stability analysis we prove the existence of a connected branch of maximal solutions emanating from infinity. Under certain additional hypothesis on the extremal solution at lambda= Lambda we prove a version of Crandall-Rabinowitz bifurcation theorem which provides a multiplicity result for lambda is an element of (Lambda,Lambda + epsilon).
引用
收藏
页数:14
相关论文
共 50 条