POSITIVE SOLUTION CURVES OF AN INFINITE SEMIPOSITONE PROBLEM

被引:0
|
作者
Dhanya, Rajendran [1 ]
机构
[1] Indian Inst Technol, Sch Math & Comp Sci, Veling 403401, Goa, India
关键词
Semipositone problems; topological methods; bifurcation theory; FREE-BOUNDARY SOLUTIONS; BIFURCATION; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the infinite semipositone problem -Delta u= lambda f(u) in Omega, a smooth bounded domain in R-N, and u = 0 on partial derivative Omega, where f(t) = t(q) - t(-beta) and 0 < q, beta< 1. Using stability analysis we prove the existence of a connected branch of maximal solutions emanating from infinity. Under certain additional hypothesis on the extremal solution at lambda= Lambda we prove a version of Crandall-Rabinowitz bifurcation theorem which provides a multiplicity result for lambda is an element of (Lambda,Lambda + epsilon).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Positive solution curves of semipositone problems with concave nonlinearities
    Castro, A
    Gadam, S
    Shivaji, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 921 - 934
  • [2] Evolution of positive solution curves in semipositone problems with concave nonlinearities
    Castro, A
    Gadam, S
    Shivaji, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (01) : 282 - 293
  • [3] Existence of a positive solution for a p-Laplacian semipositone problem
    Chhetri, Maya
    Shivaji, R.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 323 - 327
  • [4] On positive solutions for a class of infinite semipositone problems
    Ghaemi, M. B.
    Choubin, M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2013, 4 (01): : 49 - 54
  • [5] POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS
    Ramaswamy, Mythily
    Shivaji, R.
    Ye, Jinglong
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (12) : 1423 - 1433
  • [6] POSITIVE SOLUTIONS FOR INFINITE SEMIPOSITONE PROBLEMS ON EXTERIOR DOMAINS
    Lee, Eun Kyoung
    Sankar, Lakshmi
    Shivaji, R.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (9-10) : 861 - 875
  • [7] Positive solutions for a semipositone φ-Laplacian problem
    Herron, Sigifredo
    Lopera, Emer
    Sanchez, Diana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 510 (02)
  • [8] Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
    Goodrich, Christopher S.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2013, 54 (04): : 509 - 525
  • [9] Positive solutions for infinite semipositone problems with falling zeros
    Lee, Eun Kyoung
    Shivaji, R.
    Ye, Jinglong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4475 - 4479
  • [10] On the existence of positive solutions for a class of infinite semipositone problems
    Rasouli, S.H.
    Ghaemi, M.B.
    Afrouzi, G.A.
    Choubin, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2014, 76 (04): : 27 - 34