QND measurements for future gravitational-wave detectors

被引:30
|
作者
Chen, Yanbei [2 ]
Danilishin, Stefan L. [1 ]
Khalili, Farid Ya. [1 ]
Mueller-Ebhardt, Helge [3 ,4 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[2] CALTECH, Pasadena, CA 91125 USA
[3] Leibniz Univ Hannover, D-30167 Hannover, Germany
[4] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-30167 Hannover, Germany
关键词
Gravitational-wave detectors; Quantum Non-Demolition (QND) measurement; Standard Quantum Limit (SQL) beating; Optical rigidity; Quantum speed meter; Intracavity schemes; POLARIZATION SAGNAC INTERFEROMETER; QUANTUM LIMITS; SPEED METER; ANTENNAE; RIGIDITY; NOISE;
D O I
10.1007/s10714-010-1060-y
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Second-generation interferometric gravitational-wave detectors will be operating at the Standard Quantum Limit (SQL), a sensitivity limitation set by the trade off between measurement accuracy and quantum back action, which is governed by the Heisenberg Uncertainty Principle. We review several schemes that allows the quantum noise of interferometers to surpass the SQL significantly over a broad frequency band. Such schemes may be an important component of the design of third-generation detectors.
引用
收藏
页码:671 / 694
页数:24
相关论文
共 50 条
  • [21] Binary radial velocity measurements with space-based gravitational-wave detectors
    Wong, Kaze W. K.
    Baibhav, Vishal
    Berti, Emanuele
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (04) : 5665 - 5670
  • [22] Stabilized laser system at 1550 nm wavelength for future gravitational-wave detectors
    Meylahn, Fabian
    Knust, Nicole
    Willke, Benno
    [J]. PHYSICAL REVIEW D, 2022, 105 (12)
  • [23] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    [J]. PHYSICAL REVIEW D, 2022, 106 (02)
  • [24] Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input
    Khalili, Farid Ya
    Miao, Haixing
    Chen, Yanbei
    [J]. PHYSICAL REVIEW D, 2009, 80 (04):
  • [25] Advanced gravitational-wave detectors open their ears
    Feder, Toni
    [J]. PHYSICS TODAY, 2015, 68 (09)
  • [26] Displacement transformer in laser gravitational-wave detectors
    Lazebny, V. I.
    Vyatchanin, S. P.
    [J]. PHYSICS LETTERS A, 2008, 372 (44) : 6545 - 6550
  • [27] The minimum testable abundance of primordial black holes at future gravitational-wave detectors
    Luca, Valerio De
    Franciolini, Gabriele
    Pani, Paolo
    Riotto, Antonio
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (11):
  • [28] Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors
    Yamamoto, Kohei
    Kokeyama, Keiko
    Michimura, Yuta
    Enomoto, Yutaro
    Nakano, Masayuki
    Ge, Gui-Guo
    Uehara, Tomoyuki
    Somiya, Kentaro
    Izumi, Kiwamu
    Miyakawa, Osamu
    Yamamoto, Takahiro
    Yokozawa, Takaaki
    Fujikawa, Yuta
    Fujii, Nobuyuki
    Kajita, Takaaki
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (20)
  • [29] Quantum Measurement Theory in Gravitational-Wave Detectors
    Stefan L. Danilishin
    Farid Ya. Khalili
    [J]. Living Reviews in Relativity, 2012, 15
  • [30] Role of atoms in atomic gravitational-wave detectors
    Norcia, Matthew A.
    Cline, Julia R. K.
    Thompson, James K.
    [J]. PHYSICAL REVIEW A, 2017, 96 (04)