The Cauchy problem for properly hyperbolic equations in one space variable

被引:3
|
作者
Spagnolo, Sergio [1 ]
Taglialatela, Giovanni [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Bari Aldo Moro, Dipartimento Econ & Finanza, I-70124 Bari, Italy
关键词
Weakly hyperbolic equation; Cauchy problem; symetrizer; SYMMETRIZATION; PROPAGATION; POLYNOMIALS; OPERATORS; SYSTEMS; ROOTS;
D O I
10.1142/S0219891622500138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper, we consider the Cauchy problem for higher-order weakly hyperbolic equations assuming that the principal symbol depends only on one space variable and the characteristic roots tau(j) verify an inequality like tau(2)(j) (x) + tau(2 )(k)(x) <= M (tau(j) (x) - tau(k) (x))(2). We prove that the Cauchy problem is well-posed in C-infinity if the operators with frozen coefficients are uniformly hyperbolic in the sense of Garding.
引用
收藏
页码:439 / 466
页数:28
相关论文
共 50 条