Sensor Distortion Effects in Photon Monte Carlo Simulations

被引:4
|
作者
Peterson, J. R. [1 ]
O'Connor, P. [2 ]
Nomerotski, A. [2 ]
Magnier, E. [3 ]
Jernigan, J. G. [4 ]
Cheng, J. [1 ]
Cui, W. [1 ,5 ]
Peng, E. [1 ]
Rasmussen, A. [6 ]
Sembroski, G. [1 ]
机构
[1] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Univ Hawaii, Dept Astron, Honolulu, HI 96822 USA
[4] Eureka Sci, Oakland, CA 94602 USA
[5] Tsinghua Univ, Tsinghua Ctr Astrophys, Dept Astron, Beijing 100084, Peoples R China
[6] Stanford Linear Accelerator Lab, Menlo Pk, CA 94025 USA
来源
ASTROPHYSICAL JOURNAL | 2020年 / 889卷 / 02期
关键词
D O I
10.3847/1538-4357/ab64e0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a detailed method to simulating sensor distortions using a photon and electron Monte Carlo method. We use three-dimensional electrostatic simulations to parameterize the perturbed electric field profile for nonideal sensor details. We follow the conversion of simulated photons, and the subsequent response of the converted electrons to the electric field pattern. These nonideal sensor details can be implemented efficiently in a Monte Carlo approach. We demonstrate that the nonideal sensor distortions have a variety of observable consequence including the modification of the astrometric pattern; the distortion of the electron diffusion size and shape; and the distortion of flats. We show analytic validation of the diffusion physics, reproduce two kinds of edge distortion, and show qualitative validation of field-free regions, lithography errors, and fringing. We also demonstrate that there are two related effects of doping variation having different observable consequences. We show that field distortions from accumulated electrons lead to intensity-dependent point-spread functions and the sublinear variance in flats. The method is implemented in the Photon Simulator and the code is publicly available.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Monte Carlo Simulations of Photon Absorbed Fractions in a Frog Voxel Phantom
    Kinase, Sakae
    PROCEEDINGS OF THE IEEE, 2009, 97 (12) : 2086 - 2097
  • [12] Investigations on photon energy response of RadFET using Monte Carlo Simulations
    Beck, Peter
    Bock, Florian
    Boeck, Helmuth
    Latocha, Marcin
    Price, Robert A.
    Rollet, Sofia
    Wind, Michael
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (04) : 1151 - 1157
  • [13] Performance of three-photon PET imaging: Monte Carlo simulations
    Kacperski, K
    Spyrou, NM
    PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (23): : 5679 - 5695
  • [14] Exhaustive review of acceleration strategies for Monte Carlo simulations in photon transit
    Xu, Louzhe
    Zhu, Zijie
    Li, Ting
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2024, 17 (05)
  • [15] Enhancing Monte Carlo simulations of aerosol scattering using photon matrices
    Pang, Zhihua
    Song, Chengtian
    Liu, Bohu
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (24)
  • [16] MONTE CARLO SIMULATIONS OF THE PHOTON CALIBRATION FIELDS AT THE UNDERGROUND LABORATORY OF PTB
    Kowatari, M.
    Dombrowski, H.
    Neumaier, S.
    RADIATION PROTECTION DOSIMETRY, 2010, 142 (2-4) : 125 - 135
  • [17] Monte Carlo simulations
    Dapor, M
    ELECTRON-BEAM INTERACTIONS WITH SOLIDS: APPLICATION OF THE MONTE CARLO METHOD TO ELECTRON SCATTERING PROBLEMS, 2003, 186 : 69 - 90
  • [18] Monte Carlo simulations of hysteresis effects at the martensitic transformation
    Sokolovskiy, Vladimir
    Zagrebin, Mikhail
    Buchelnikov, Vasiliy
    PHYSICA B-CONDENSED MATTER, 2019, 575
  • [19] Framework for denoising Monte Carlo photon transport simulations using deep learning
    Ardakani, Matin Raayai
    Yu, Leiming
    Kaeli, David
    Fang, Qianqian
    JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (08)
  • [20] Self-consistent Atmosphere Representation and Interaction in Photon Monte Carlo Simulations
    Peterson, J. R.
    Sembroski, G.
    Dutta, A.
    Remocaldo, C.
    ASTROPHYSICAL JOURNAL, 2024, 964 (02):