Rough singular integrals associated to surfaces of revolution

被引:24
|
作者
Lu, SZ [1 ]
Pan, YB
Yang, DC
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
curve; surface of revolution; singular integral; maximal operator; rough kernel; Hardy space; sphere;
D O I
10.1090/S0002-9939-01-05893-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and n greater than or equal to 2. The authors establish the L-p (Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution, {(t, phi(\t\)) : t is an element of R-n}, with rough kernels, provided that the corresponding maximal function along the plane curve {(t, phi(\t\)) : t is an element of R} is bounded on L-p (R-2).
引用
收藏
页码:2931 / 2940
页数:10
相关论文
共 50 条
  • [41] Lp BOUNDS FOR THE COMMUTATORS OF SINGULAR INTEGRALS AND MAXIMAL SINGULAR INTEGRALS WITH ROUGH KERNELS
    Chen, Yanping
    Ding, Yong
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (03) : 1585 - 1608
  • [42] Rough singular integrals supported on submanifolds
    Chen, Yanping
    Ding, Yong
    Liu, Honghai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (02) : 677 - 691
  • [43] NON-ISOTROPIC SINGULAR INTEGRALS AND MAXIMAL OPERATORS ALONG SURFACES OF REVOLUTION
    Fan, Dashan
    Wu, Huoxiong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02): : 461 - 476
  • [44] SINGULAR-INTEGRALS ON SURFACES
    DAVID, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1384 : 159 - 167
  • [45] Boundedness of singular integrals of variable rough Calderon-Zygmund kernels along surfaces
    Tang, L
    Yang, DC
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 43 (04) : 488 - 502
  • [46] ROUGH MULTIPLE SINGULAR INTEGRALS ALONG HYPERSURFACES
    邓浏睿
    李中凯
    马柏林
    伍火熊
    Acta Mathematica Scientia, 2011, 31 (05) : 2081 - 2098
  • [47] CERTAIN Lp BOUNDS FOR ROUGH SINGULAR INTEGRALS
    Al-Balushi, Khadija
    Al-Salman, Ahmad
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04): : 803 - 822
  • [48] Improved estimates for bilinear rough singular integrals
    He, Danqing
    Park, Bae Jun
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1951 - 1978
  • [49] Weighted estimates for rough oscillatory singular integrals
    Harri Ojanen
    Journal of Fourier Analysis and Applications, 2000, 6 : 427 - 436
  • [50] On certain estimates of rough oscillatory singular integrals
    Al-Qassem, H.M.
    World Academy of Science, Engineering and Technology, 2011, 51 : 659 - 662