Fusion learning-based recurrent neural network for human motion prediction

被引:6
|
作者
Guo, Chongyang [1 ]
Liu, Rui [1 ]
Che, Chao [1 ]
Zhou, Dongsheng [1 ,2 ]
Zhang, Qiang [1 ,2 ]
Wei, Xiaopeng [2 ]
机构
[1] Dalian Univ, Key Lab Adv Design & Intelligent Comp, Minist Educ, Sch Soft Engn, Dalian 116622, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
关键词
Human motion prediction; Recurrent neural network; Fusion loss learning;
D O I
10.1007/s11370-021-00403-5
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Human motion prediction is an important research frontier, which is a key supporting technology in the fields of human-robot collaboration, automatic driving, etc. As is well known, long-term motion prediction is one most challenging direction. This paper mainly focuses on how to eliminate cumulative errors to overcome the fossilization of long-term motion sequences and aims to improve the reliability of prediction results. This paper proposed an algorithm named "fusion loss learning network," which is based on gated recurrent unit, to solve the above-mentioned problem. A fusion training method was established by combining the sampling of each step of the GRU unit with true value and output value of each previous step, which helped recover from the errors in the long-term prediction sequences. This method achieved promising results on the Human 3.6 M dataset. The results show that the proposed method could significantly improve the performance of long-term human motion prediction, and the total prediction error is reduced by 7.25% on average.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [31] Landslide Deformation Prediction Based on Recurrent Neural Network
    Chen, Huangqiong
    Zeng, Zhigang
    Tang, Huiming
    NEURAL PROCESSING LETTERS, 2015, 41 (02) : 169 - 178
  • [32] Vessel trajectory prediction based on recurrent neural network
    Hu Y.
    Xia W.
    Hu X.
    Sun H.
    Wang Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (04): : 871 - 877
  • [33] Landslide Deformation Prediction Based on Recurrent Neural Network
    Huangqiong Chen
    Zhigang Zeng
    Huiming Tang
    Neural Processing Letters, 2015, 41 : 169 - 178
  • [34] Recurrent Neural Network Based Narrowband Channel Prediction
    Liu, Wei
    Yang, Lie-Liang
    Hanzo, Lajos
    2006 IEEE 63RD VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6, 2006, : 2173 - 2177
  • [35] A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network
    Peng, Jiajie
    Li, Jingyi
    Shang, Xuequn
    BMC BIOINFORMATICS, 2020, 21 (Suppl 13)
  • [36] A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network
    Jiajie Peng
    Jingyi Li
    Xuequn Shang
    BMC Bioinformatics, 21
  • [37] Evolving network representation learning based on recurrent neural network
    Chen, Dongming
    Nie, Mingshuo
    Gan, Qianqian
    Wang, Dongqi
    International Journal of Sensor Networks, 2024, 46 (02) : 114 - 122
  • [38] Deep Learning-Based Pathomic Fusion for Glioma Outcome Prediction
    Chen, Richard
    Lu, Ming
    Wang, Jingwen
    Mahmood, Faisal
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 1443 - 1444
  • [39] I-Planner: Intention-aware motion planning using learning-based human motion prediction
    Park, Jae Sung
    Park, Chonhyon
    Manocha, Dinesh
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2019, 38 (01): : 23 - 39
  • [40] Deep Learning-Based Pathomic Fusion for Glioma Outcome Prediction
    Chen, Richard
    Lu, Ming
    Wang, Jingwen
    Mahmood, Faisal
    MODERN PATHOLOGY, 2020, 33 (SUPPL 2) : 1443 - 1444