An S-transform approach to integration with respect to a fractional Brownian motion

被引:28
|
作者
Bender, C [1 ]
机构
[1] Univ Konstanz, Fac Sci, Dept Math & Stat, D-78457 Constance, Germany
关键词
change of measure; fractional Brownian motion; fractional Girsanov theorem; fractional Ito integral; S-transform;
D O I
10.3150/bj/1072215197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give an elementary definition of the (Wick-)Ito integral with respect to a fractional Brownian motion using the expectation, the ordinary Lebesgue integral and the classical (simple) Wiener integral. Then we provide new and simple proofs of some basic properties of this integral, including the so-called fractional Ito isometry. We calculate the expectation of the fractional Ito integral under change of measure and prove a Girsanov theorem for the fractional Ito integral (not only for fractional Brownian motion). We then derive an Ito formula for functionals of a fractional Wiener integral. Finally, we compare our approach with other approaches that yield essentially the same integral.
引用
收藏
页码:955 / 983
页数:29
相关论文
共 50 条
  • [1] Integration with Respect to the Hermitian Fractional Brownian Motion
    Deya, Aurelien
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (01) : 295 - 318
  • [2] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 231 - 236
  • [3] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [4] Integration with Respect to the Hermitian Fractional Brownian Motion
    Aurélien Deya
    Journal of Theoretical Probability, 2020, 33 : 295 - 318
  • [5] Wiener integration with respect to fractional brownian motion
    Mishura, Yuliya S.
    STOCHASTIC CALCULUS FOR FRACTIONAL BROWNIAN MOTION AND RELATED PROCESSES, 2008, 1929 : 1 - +
  • [6] A NEW APPROACH TO STOCHASTIC INTEGRATION WITH RESPECT TO FRACTIONAL BROWNIAN MOTION FOR NO ADAPTED PROCESSES
    Khalida, Bachir Cherif
    Abdeldjebbar, Kandouci
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (04): : 321 - 337
  • [7] Integration with respect to the non-commutative fractional Brownian motion
    Deya, Aurelien
    Schott, Rene
    BERNOULLI, 2019, 25 (03) : 2137 - 2162
  • [8] Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions
    Lebovits, Joachim
    Vehel, Jacques Levy
    Herbin, Erick
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 678 - 708
  • [9] Some It Formulas with Respect to Mixed Fractional Brownian Motion and Brownian Motion
    舒慧生
    阚秀
    周海涛
    JournalofDonghuaUniversity(EnglishEdition), 2010, 27 (04) : 530 - 534
  • [10] Wick integration with respect to fractional Brownian sheet
    Yoon Tae Kim
    Journal of the Korean Statistical Society, 2010, 39 : 523 - 531