Limit on the speed of quantum computation in determining parity

被引:80
|
作者
Farhi, E [1 ]
Goldstone, J
Gutmann, S
Sipser, M
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.81.5442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider a function f which is defined on the integers from 1 to N and takes the values -1 and +1. The parity of f is the product over all x from 1 to N of f(x). With no further information about f, to classically determine the parity of f requires N calls of the function f. We show that any quantum algorithm capable of determining the parity of f contains at least N/2 applications of the unitary operator which evaluates f. Thus, for this problem, quantum computers cannot outperform classical computers. [S0031-9007(98)07850-8].
引用
收藏
页码:5442 / 5444
页数:3
相关论文
共 50 条
  • [21] Precision thermometry and the quantum speed limit
    Campbell, Steve
    Genoni, Marco G.
    Deffner, Sebastian
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (02):
  • [22] Quantum speed limit for complex dynamics
    Mao Zhang
    Huai-Ming Yu
    Jing Liu
    npj Quantum Information, 9
  • [23] Quantum limit on computational time and speed
    Pati, AK
    Jain, SR
    Mitra, A
    Ramanna, R
    PHYSICS LETTERS A, 2002, 301 (3-4) : 125 - 129
  • [24] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [25] Effect of measurements on quantum speed limit
    Srivastav, Abhay
    Pandey, Vivek
    Pati, Arun k.
    EPL, 2024, 146 (06)
  • [26] Operational definition of a quantum speed limit
    Shao, Yanyan
    Liu, Bo
    Zhang, Mao
    Yuan, Haidong
    Liu, Jing
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [27] Geometric derivation of the quantum speed limit
    Jones, Philip J.
    Kok, Pieter
    PHYSICAL REVIEW A, 2010, 82 (02):
  • [28] Quantum speed limit for complex dynamics
    Zhang, Mao
    Yu, Huai-Ming
    Liu, Jing
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [29] Quantum Speed Limit for Physical Processes
    Taddei, M. M.
    Escher, B. M.
    Davidovich, L.
    de Matos Filho, R. L.
    PHYSICAL REVIEW LETTERS, 2013, 110 (05)
  • [30] Quantum speed limit for thermal states
    Il'in, Nikolai
    Lychkovskiy, Oleg
    PHYSICAL REVIEW A, 2021, 103 (06)