Joint Learning of Object Detection and Pose Estimation using Augmented Autoencoder

被引:0
|
作者
Hayashi, Ryota [1 ]
Shimokura, Asei [1 ]
Matsumoto, Takuya [1 ]
Ukita, Norimichi [1 ]
机构
[1] Toyota Technol Inst, Nagoya, Aichi, Japan
关键词
D O I
10.23919/MVA51890.2021.9511343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a method for estimating the pose of a rigid object. While an appearance-based pose estimator requires a bounding box of each target object, an object detector is in general trained independently of the pose estimator. Recent pose estimators are robust to occlusion and image deviation, if the object region is correctly located by the detector. In reality, however, it is difficult to detect correct bounding-boxes, and such erroneous bounding-boxes make pose estimation inaccurate. Our proposed method integrates the object detector and the pose estimator so that they share feature maps and support to each other for improving the pose estimation accuracy. Experimental results demonstrate that the performance of our method is 7.54 times better than the SoTA pose estimation method.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Multiplicative kernels: Object detection, segmentation and pose estimation
    Yuan, Quan
    Thangali, Ashwin
    Ablavsky, Vitaly
    Sclaroff, Stan
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3095 - 3102
  • [32] Viewpoint-Aware Object Detection and Pose Estimation
    Glasner, Daniel
    Galun, Meirav
    Alpert, Sharon
    Basri, Ronen
    Shakhnarovich, Gregory
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 1275 - 1282
  • [33] Distance Transform Templates for Object Detection and Pose Estimation
    Holzer, Stefan
    Hinterstoisser, Stefan
    Ilic, Slobodan
    Navab, Nassir
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1177 - +
  • [34] Alternating Regression Forests for Object Detection and Pose Estimation
    Schulter, Samuel
    Leistner, Christian
    Wohlhart, Paul
    Roth, Peter M.
    Bischof, Horst
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 417 - 424
  • [35] Object Recognition and Pose Estimation Using KLT
    Kim, Hye-Jin
    Lee, Jae Yeon
    Kim, Jae Hong
    Kim, Joong Bae
    Han, Woo Yong
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2012, : 214 - 217
  • [36] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [37] Deep Multi-State Object Pose Estimation for Augmented Reality Assembly
    Su, Yongzhi
    Rambach, Jason
    Minaskan, Nareg
    Lesur, Paul
    Pagani, Alain
    Stricker, Didier
    [J]. ADJUNCT PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT 2019), 2019, : 222 - 227
  • [38] A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation
    Mitash, Chaitanya
    Bekris, Kostas E.
    Boularias, Abdeslam
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 545 - 551
  • [39] Multitask Network for Joint Object Detection, Semantic Segmentation and Human Pose Estimation in Vehicle Occupancy Monitoring
    Ebert, Nikolas
    Mangat, Patrick
    Wasenmueller, Oliver
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 637 - 643
  • [40] Generalized Feedback Loop for Joint Hand-Object Pose Estimation
    Oberweger, Markus
    Wohlhart, Paul
    Lepetit, Vincent
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (08) : 1898 - 1912