3D Plant Modelling via Hyperspectral Imaging

被引:20
|
作者
Liang, Jie [1 ]
Zia, Ali [2 ]
Zhou, Jun [2 ]
Sirault, Xavier [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT 0200, Australia
[2] Griffith Univ, Nathan, Qld 4111, Australia
[3] CSIRO, Clayton, Vic, Australia
关键词
D O I
10.1109/ICCVW.2013.29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Plant phenomics research requires different types of sensors be employed to measure the physical traits of plant surface and to estimate the plant biomass. Of particular interest is the hyperspectral imaging device which captures wavelength indexed band images that characterise material properties of objects under study. In this paper, we introduce a proof of concept research that builds 3D plant model directly from hyperspectral images captured in a controlled lab environment. We show that hyperspectral imaging has shown clear advantages in segmenting plant from its background and is promising in generating comprehensive 3D plant models.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 50 条
  • [1] A hyperspectral projectoror simultaneous 3D spatial and hyperspectral imaging via structured illumination
    Xu, Yibo
    Giljum, Anthony
    Kelly, Kevin F.
    [J]. OPTICS EXPRESS, 2020, 28 (20): : 29740 - 29755
  • [2] Determination of wheat rust severity using hyperspectral imagery and 3D plant reconstruction modelling
    Rodriguez-Vazquez, J. N.
    Apolo-Apolo, O. E.
    Castro-Valdecantos, P.
    Perez-Ruiz, M.
    Marinez-Guanter, J.
    Martinez-Moreno, F.
    Solis, I
    Egea, G.
    [J]. PRECISION AGRICULTURE'21, 2021, : 249 - 256
  • [3] Generation and Application of Hyperspectral 3D Plant Models
    Behmann, Jan
    Mahlein, Anne-Katrin
    Paulus, Stefan
    Kuhlmann, Heiner
    Oerke, Erich-Christian
    Pluemer, Lutz
    [J]. COMPUTER VISION - ECCV 2014 WORKSHOPS, PT IV, 2015, 8928 : 117 - 130
  • [4] Hyperspectral Imaging Reflectometry for 3D Semiconductor Metrology
    Kim, Jinseob
    Park, Gwangsik
    Han, Daehoon
    Kim, Wookrae
    Lee, Myungjun
    [J]. 2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [5] 3D GEOLOGICAL MODELLING USING LASER AND HYPERSPECTRAL DATA
    Nieto, Juan I.
    Monteiro, Sildomar T.
    Viejo, Diego
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4568 - 4571
  • [6] Special issue on 3D imaging and modelling
    Hilton, Adrian
    Godin, Guy
    Shu, Chang
    Masuda, Takeshi
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (05) : 559 - 560
  • [7] DETECTION OF DISEASE SYMPTOMS ON HYPERSPECTRAL 3D PLANT MODELS
    Roscher, Ribana
    Behmann, Jan
    Mahlein, Anne-Katrin
    Dupuis, Jan
    Kuhlmann, Heiner
    Pluemer, Lutz
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 89 - 96
  • [8] Hyperspectral imaging and 3D technologies for plant phenotyping: From satellite to close-range sensing
    Liu, Huajian
    Bruning, Brooke
    Garnett, Trevor
    Berger, Bettina
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 175
  • [9] A combined 3D and hyperspectral method for surface imaging of wounds
    Paluchowski, Lukasz A.
    Denstedt, Martin
    Roren, Thomas
    Pukstad, Brita
    Randeberg, Lise Lyngsnes
    [J]. OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE X, 2013, 8578
  • [10] A hyperspectral fluorescence system for 3D in vivo optical imaging
    Zavattini, Guido
    Vecchi, Stefania
    Mitchell, Gregory
    Weisser, Ulli
    Leahy, Richard M.
    Pichler, Bernd J.
    Smith, Desmond J.
    Cherry, Simon R.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (08): : 2029 - 2043