Design and Optical Properties of Active Polymer-Coated Plasmonic Nanostructures

被引:52
|
作者
Gehan, Helene [1 ]
Mangeney, Claire [1 ]
Aubard, Jean [1 ]
Levi, Georges [1 ]
Hohenau, Andreas [2 ]
Krenn, Joachim R. [2 ]
Lacaze, Emmanuelle [3 ]
Felidj, Nordin [1 ]
机构
[1] Univ Paris Diderot, Lab ITODYS, CNRS UMR 7086, F-75013 Paris, France
[2] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
[3] Univ Paris 06, Lab INSP, F-75005 Paris, France
来源
关键词
ENHANCED RAMAN-SCATTERING; DISCRETE-DIPOLE APPROXIMATION; RESONANCE SPECTROSCOPY; GOLD NANOPARTICLES; MOLECULAR PLASMONICS; DIAZONIUM SALTS; MICROGELS; BRUSHES; TRANSDUCTION; MONOLAYERS;
D O I
10.1021/jz200272r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The grafting of stimuli-responsive polymer brushes on plasmonic structures provides a perfectly controlled two-dimensional active device with optical properties that can be modified through external stimuli. Herein, we demonstrate thermally induced modifications of the plasmonic response of lithographic gold nanoparticles functionalized by thermosensitive polymer brushes of (poly(N-isopropylacrylamide), PNIPAM). Optical modifications result from refractive local index changes due to a phase transition from a hydrophilic state (swollen regime) to a hydrophobic state (collapsed regime) of the polymer chains occurring in a very small range of temperatures. The refract:ye index of the polymer in aqueous solution is estimated in both states, deduced from the discrete dipole approximation (DDA) method. The combination of lithographic gold NPs and thermoresponsive polymer chains leads to a new generation of perfectly calibrated and dynamically controlled hybrid gold/polymer system for real-time nanosensors.
引用
收藏
页码:926 / 931
页数:6
相关论文
共 50 条
  • [21] MECHANICAL RELIABILITY OF POLYMER-COATED AND HERMETICALLY COATED OPTICAL FIBERS BASED ON PROOF TESTING
    BOGATYRJOV, VA
    BUBNOV, MM
    DIANOV, EM
    RUMYANTZEV, SD
    SEMJONOV, SL
    OPTICAL ENGINEERING, 1991, 30 (06) : 690 - 699
  • [22] Photoelectrochemical Responses from Polymer-coated Plasmonic Copper Nanoparticles on TiO2
    Yamaguchi, Taishi
    Kazuma, Emiko
    Sakai, Nobuyuki
    Tatsuma, Tetsu
    CHEMISTRY LETTERS, 2012, 41 (10) : 1340 - 1342
  • [23] Polymer-coated quantum dots
    Tomczak, Nikodem
    Liu, Rongrong
    Vancso, Julius G.
    NANOSCALE, 2013, 5 (24) : 12018 - 12032
  • [24] Synthesis and Evaluation of Engineering Properties of Polymer-Coated Glass Beads
    Yoon, Boyoung
    Choo, Hyunwook
    Lee, Changho
    MATERIALS, 2023, 16 (12)
  • [25] EFFECT OF COMPRESSION ON THE RELEASE PROPERTIES OF POLYMER-COATED NIACIN GRANULES
    BANSAL, P
    VASIREDDY, S
    PLAKOGIANNIS, F
    PARIKH, D
    JOURNAL OF CONTROLLED RELEASE, 1993, 27 (02) : 157 - 163
  • [26] TEMPERATURE-DEPENDENCE OF THE STATIC FATIGUE OF POLYMER-COATED OPTICAL FIBERS
    CHANDAN, HC
    KALISH, D
    AMERICAN CERAMIC SOCIETY BULLETIN, 1981, 60 (03): : 413 - 413
  • [27] STATIC AND DYNAMIC FATIGUE OF A POLYMER-COATED FUSED SILICA OPTICAL FIBER
    KALISH, D
    TARIYAL, BK
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1978, 61 (11-1) : 518 - 523
  • [28] Hybrid Electro-Optical Pumping of Active Plasmonic Nanostructures
    Vyshnevyy, Andrey A.
    Fedyanin, Dmitry Yu
    NANOMATERIALS, 2020, 10 (05)
  • [29] Polymer-coated optical fibres for application in a direct evanescent wave Immunoassay
    Preininger, C
    Mencaglia, A
    Baldini, F
    ANALYTICA CHIMICA ACTA, 2000, 403 (1-2) : 67 - 76
  • [30] High-temperature ageing of modern polymer-coated optical fibres
    Mauron, P
    Nellen, M
    Sennhauser, U
    RELIABILITY OF PHOTONICS MATERIALS AND STRUCTURES, 1998, 531 : 125 - 130